Skip to main content

Advertisement

Log in

Interband transitions and exciton binding energy in a Razavy quantum well: effects of external fields and Razavy potential parameters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we theoretically investigated the influence of externally applied fields such as high-frequency non-resonant intense laser fields, static electric and magnetic fields, as well as structure parameters, on the interband transitions and exciton binding energy of a GaAs quantum well with Razavy confinement potential. To perform numerical calculations, the ground state electron and heavy hole subband energy levels of the structure and the envelope wave functions corresponding to these states were calculated using a variational method within the framework of the effective mass and parabolic band approaches. After obtaining the numerical values, the band transitions of the structure, the exciton binding energy, the dipole moment matrix elements, and the transition energy between the ground state electron and heavy hole subband energies of the structure were evaluated in detail. The results show that the Razavy potential profile turns into a single QW structure for particular dimensionless structure parameters and the peak position of the interband transition coefficient shifts toward red (lower energy) with the increase in the structure parameters and electric field strength, while it shifts toward the blue (higher energy) with the increase in the intensity of the intense laser field and magnetic field. We believe that these numerical results will be useful in the design and production of next-generation electronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The corresponding author will provide the files in case they are requested. This manuscript has associated data in a data repository. [Authors’ comment: The data would be available upon request.]

References

  1. R.L. Restrepo, J.P. González-Pereira, E. Kasapoglu, A.L. Morales, C.A. Duque, Linear and nonlinear optical properties in the terahertz regime for multiple-step quantum wells under intense laser field: electric and magnetic field effects. Opt. Mater. 86, 590–599 (2018)

    Article  ADS  Google Scholar 

  2. E.C. Niculescu, Electromagnetically induced transparency in an asymmetric double quantum well under non-resonant, intense laser fields. Opt. Mater. 64, 540–547 (2017)

    Article  ADS  Google Scholar 

  3. H.V. Phuc, N. Duy Anh Tuan, L. Dinh, Linear and nonlinear magneto-optical absorption in a quantum well modulated by intense laser field. Superlattices Microstruct. 100, 1112–1119 (2016)

    Article  ADS  Google Scholar 

  4. J.-F. You, Q. Zhao, Z.-H. Zhang, J.-H. Yuan, K.-X. Guo, E. Feddi, The effect of temperature, hydrostatic pressure and magnetic field on the nonlinear optical properties of AlGaAs/GaAs semi-parabolic quantum well. Int. J. Mod. Phys. B 33, 1950325 (2019)

    Article  ADS  Google Scholar 

  5. H.M. Youssef, A.A. El-Bary, Generalized thermoelastic infinite layer subjected to ramp-type thermal and mechanical loading under three theories—state space approach. J. Therm. Stresses 32, 1293–1309 (2009)

    Article  Google Scholar 

  6. M.A. Ezzat, A.A. El-Bary, Magneto-thermoelectric viscoelastic materials with memory-dependent derivative involving two-temperature. Int. J. Appl. Electromagn. Mech. 50, 549–567 (2016)

    Article  Google Scholar 

  7. M. Ezzat, A.A. El-Bary, S. Ezzat, Combined heat and mass transfer for unsteady MHD flow of perfect conducting micropolar fluid with thermal relaxation. Energy Convers. Manage. 52, 934–945 (2011)

    Article  Google Scholar 

  8. G. Liu, K. Guo, Z. Zhang, H. Hassanbadi, L. Lu, Electric field effects on nonlinear optical rectification in symmetric coupled AlxGa1−xAs/GaAs quantum wells. Thin Solid Films 662, 27–32 (2018)

    Article  ADS  Google Scholar 

  9. G. Liu, K. Guo, H. Hassanabadi, L. Lu, Linear and nonlinear optical properties in a disk-shaped quantum dot with a parabolic potential plus a hyperbolic potential in a static magnetic field. Physica B 407, 3676–3682 (2012)

    Article  ADS  Google Scholar 

  10. A. Ghanbari, R. Khordad, F. Taghizadeh, Influence of Coulomb term on thermal properties of fluorine. Chem. Phys. Lett. 801, 139725 (2022)

    Article  Google Scholar 

  11. B.O. Alaydin, D. Altun, E. Ozturk, Linear and nonlinear optical properties of semi-elliptical InAs quantum dots: effects of wetting layer thickness and electric field. Thin Solid Films 755, 139322 (2022)

    Article  ADS  Google Scholar 

  12. M. Sayrac, A. Turkoglu, F. Ungan, Influence of hydrostatic pressure, temperature, and terahertz laser field on the electron-related optical responses in an asymmetric double quantum well. Eur Phys J B 94, 121 (2021)

    Article  Google Scholar 

  13. M. Sayrac, Effects of applied external fields on the nonlinear optical rectification, second, and third-harmonic generation in an asymmetrical semi exponential quantum well. Opt. Quant. Electron. 54, 52 (2021)

    Article  Google Scholar 

  14. I. Karabulut, E. Paspalakis, The role of permanent dipoles on the intensity-dependent nonlinear optical properties in asymmetric coupled quantum wells under a static electric field. Physica E 81, 294–301 (2016)

    Article  ADS  Google Scholar 

  15. K. Li, K. Guo, X. Jiang, M. Hu, Effect of position-dependent effective mass on nonlinear optical properties in a quantum well. Optik 132, 375–381 (2017)

    Article  ADS  Google Scholar 

  16. B.T. Diroll, M. Chen, I. Coropceanu, K.R. Williams, D.V. Talapin, P. Guyot-Sionnest, R.D. Schaller, Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells. Nat. Commun. 10, 4511 (2019)

    Article  ADS  Google Scholar 

  17. H. Dakhlaoui, M. Nefzi, Simultaneous effect of impurities, hydrostatic pressure, and applied potential on the optical absorptions in a GaAs field-effect transistor. Results Phys. 15, 102618 (2019)

    Article  Google Scholar 

  18. H. Noverola-Gamas, L.M. Gaggero-Sager, O. Oubram, Interlayer distance effects on absorption coefficient and refraction index change in p-type double-δ-doped GaAs quantum wells*. Chin. Phys. B 28, 124207 (2019)

    Article  ADS  Google Scholar 

  19. H. Yıldırım, Many-body effects on intersubband transitions in polar ZnO/ZnMgO multiple quantum wells. Physica B 571, 26–31 (2019)

    Article  ADS  Google Scholar 

  20. M.A. Ezzat, A.S. El-Karamany, A.A. El-Bary, M.A. Fayik, Fractional ultrafast laser-induced magneto-thermoelastic behavior in perfect conducting metal films. J. Electromagn. Waves Appl. 28, 64–82 (2014)

    Article  Google Scholar 

  21. G. Liu, K. Guo, Z. Zhang, H. Hassanbadi, L. Lu, Nonlinear optical rectification in laterally-coupled quantum well wires with applied electric field. Superlattices Microstruct. 103, 230–244 (2017)

    Article  ADS  Google Scholar 

  22. W. Zhai, H. Hassanbadi, L. Lu, G. Liu, A theoretical study of third-harmonic generation in semi-parabolic plus semi-inverse squared quantum wells. Opt. Commun. 319, 95–99 (2014)

    Article  ADS  Google Scholar 

  23. B.O. Alaydin, Effect of high bandgap AlAs quantum barrier on electronic and optical properties of In0.70Ga0.30As/Al0.60In0.40As superlattice under applied electric field for laser and detector applications. Int. J. Modern Phys. B 35, 2150027 (2021)

    Article  ADS  Google Scholar 

  24. M. Sayrac, A. Turkoglu, M.E. Mora-Ramos, F. Ungan, Intensity-dependent nonlinear optical properties in an asymmetric Gaussian potential quantum well-modulated by external fields. Opt. Quant. Electron. 53, 485 (2021)

    Article  Google Scholar 

  25. H. Dakhlaoui, M. Nefzi, Tuning the linear and nonlinear optical properties in double and triple δ—doped GaAs semiconductor: Impact of electric and magnetic fields. Superlattices Microstruct. 136, 106292 (2019)

    Article  Google Scholar 

  26. F. Ungan, M.K. Bahar, J.C. Martinez-Orozco, M.E. Mora-Ramos, Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields. Photonics Nanostruct. Fundam. Appl. 41, 100833 (2020)

    Article  Google Scholar 

  27. N.D. Hien, C.A. Duque, E. Feddi, N.V. Hieu, H.D. Trien, L.T.T. Phuong, B.D. Hoi, L.T. Hoa, C.V. Nguyen, N.N. Hieu, H.V. Phuc, Magneto-optical effect in GaAs/GaAlAs semi-parabolic quantum well. Thin Solid Films 682, 10–17 (2019)

    Article  ADS  Google Scholar 

  28. E.F. Schubert, Delta doping of III–V compound semiconductors: Fundamentals and device applications. J. Vac. Sci. Technol. A 8, 2980–2996 (1990)

    Article  ADS  Google Scholar 

  29. K. Ploog, M. Hauser, A. Fischer, Fundamental studies and device application of δ-doping in GaAs Layers and in AlxGa1−xAs/GaAs heterostructures. Appl. Phys. A 45, 233–244 (1988)

    Article  ADS  Google Scholar 

  30. A.C. Maciel, M. Tatham, J.F. Ryan, J.M. Worlock, R.E. Nahory, J.P. Harbison, L.T. Florez, Raman scattering from electronic excitations in periodically δ-doped GaAs. Surf. Sci. 228, 251–254 (1990)

    Article  ADS  Google Scholar 

  31. M.H. Degani, Electron energy levels in a delta doped layer in GaAs. Phys. Rev. B 44, 5580–5584 (1991)

    Article  ADS  Google Scholar 

  32. G. Liu, K. Guo, H. Hassanabadi, L. Lu, B.H. Yazarloo, A theoretical study of nonlinear optical absorption and refractive index changes with the three-dimensional ring-shaped pseudoharmonic potential. Physica B 415, 92–96 (2013)

    Article  ADS  Google Scholar 

  33. L. Lu, W. Xie, H. Hassanabadi, Linear and nonlinear optical absorption coefficients and refractive index changes in a two-electron quantum dot. J. Appl. Phys. 109, 063108 (2011)

    Article  ADS  Google Scholar 

  34. L. Lu, W. Xie, H. Hassanabadi, The effects of intense laser on nonlinear properties of shallow donor impurities in quantum dots with the Woods-Saxon potential. J. Lumin. 131, 2538–2543 (2011)

    Article  Google Scholar 

  35. H.R. Rastegar Sedehi, R. Khordad, H. Bahramiyan, Optical properties and diamagnetic susceptibility of a hexagonal quantum dot: impurity effect. Opt. Quantum Electron. 53, 264 (2021)

    Article  Google Scholar 

  36. H.S. Aydinoglu, M. Sayrac, M.E. Mora-Ramos, F. Ungan, Nonlinear optical properties in AlxGa1-xAs/GaAs double-graded quantum wells: The effect of the structure parameter, static electric, and magnetic field. Solid State Commun. 342, 114647 (2022)

    Article  Google Scholar 

  37. J. Osvald, Electronic properties of a near surface Si -doped GaAs under an applied electric field. J. Phys. D Appl. Phys. 37, 2655–2659 (2004)

    Article  ADS  Google Scholar 

  38. K.M. Wong, D.W.E. Allsopp, Intersubband absorption modulation in coupled double quantum wells by external bias. Semicond. Sci. Technol. 24, 045018 (2009)

    Article  ADS  Google Scholar 

  39. H. Hassanabadi, G. Liu, L. Lu, Nonlinear optical rectification and the second-harmonic generation in semi-parabolic and semi-inverse squared quantum wells. Solid State Commun. 152, 1761–1766 (2012)

    Article  ADS  Google Scholar 

  40. H. Hassanabadi, H. Rahimov, L. Lu, C. Wang, Nonlinear optical properties of a three-electron quantum dot with account of the Rashba spin–orbit interaction. J. Lumin. 132, 1095–1100 (2012)

    Article  Google Scholar 

  41. J. Krupski, M. Piȩtka, On the accuracy of the Thomas-Fermi-Dirac method applied to sub-band structure calculations in a δ-doped semiconductor. Solid State Commun. 107, 141–144 (1998)

    Article  ADS  Google Scholar 

  42. E. Ozturk, Y. Ergun, H. Sari, I. Sokmen, The self-consistent calculation of Si δ-doped GaAs structures. Appl. Phys. A 73, 749–754 (2001)

    Article  ADS  Google Scholar 

  43. E. Kasapoglu, F. Ungan, H. Sari, I. Sökmen, The hydrostatic pressure and temperature effects on donor impurities in cylindrical quantum wire under the magnetic field. Physica E 42, 1623–1626 (2010)

    Article  ADS  MATH  Google Scholar 

  44. R. Khordad, S.K. Khaneghah, M. Masoumi, Effect of pressure on intersubband optical absorption coefficients and refractive index changes in a V-groove quantum wire. Superlattices Microstruct. 47, 538–549 (2010)

    Article  ADS  Google Scholar 

  45. L. Lu, W. Xie, H. Hassanabadi, Laser field effect on the nonlinear optical properties of donor impurities in quantum dots with Gaussian potential. Physica B 406, 4129–4134 (2011)

    Article  ADS  Google Scholar 

  46. L.M. Gaggero-Sager, G.G. Naumis, M.A. Muñoz-Hernandez, V. Montiel-Palma, Self-consistent calculation of transport properties in Si δ-doped GaAs quantum wells as a function of the temperature. Physica B 405, 4267–4270 (2010)

    Article  ADS  Google Scholar 

  47. R.B. Dhafer, H. Saidi, S. Ridene, Proposal of InP/AlInGaAs single delta quantum well for fiber-optic communications. Optik 158, 164–169 (2018)

    Article  ADS  Google Scholar 

  48. M. Razavy, An exactly soluble Schrödinger equation with a bistable potential. Am. J. Phys. 48, 285–288 (1980)

    Article  ADS  Google Scholar 

  49. M. Baradaran, H. Panahi, Exact solutions of a class of double-well potentials: algebraic bethe ansatz. Adv. High Energy Phys. 2017, 8429863 (2017)

    MathSciNet  MATH  Google Scholar 

  50. H. Karayer, D. Demirhan, K.G. Atman, Analytical exact solutions for the Razavy type potential. Math. Methods Appl. Sci. 43, 9185–9194 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. E. Kasapoglu, H. Sari, I. Sökmen, J.A. Vinasco, D. Laroze, C.A. Duque, Effects of intense laser field and position dependent effective mass in Razavy quantum wells and quantum dots. Physica E 126, 114461 (2021)

    Article  Google Scholar 

  52. V.K. Arora, Quantum size effect in thin-wire transport. Phys. Rev. B 23, 5611–5612 (1981)

    Article  ADS  Google Scholar 

  53. J. Lee, H.N. Spector, Hydrogenic impurity states in a quantum well wire. J. Vacuum Sci. Technol. B Microelectron. Process. Phenomena 2, 16–20 (1984)

    Article  ADS  Google Scholar 

  54. S. Luryi, F. Capasso, Resonant tunneling of two-dimensional electrons through a quantum wire: a negative transconductance device. Appl. Phys. Lett. 47, 1347–1349 (1985)

    Article  ADS  Google Scholar 

  55. E.C. Garnett, M.L. Brongersma, Y. Cui, M.D. McGehee, Nanowire solar cells. Annu. Rev. Mater. Res. 41, 269–295 (2011)

    Article  ADS  Google Scholar 

  56. F. Zaouali, A. Bouazra, M. Said, A theoretical evaluation of optical properties of InAs/InP quantum wire with a dome cross-section. Optik 174, 513–520 (2018)

    Article  ADS  Google Scholar 

  57. L. Van-Tan, T.V. Thang, N.D. Vy, H.T. Cao, Spin polarization and temperature dependence of electron effective mass in quantum wires. Phys. Lett. A 383, 2110–2113 (2019)

    Article  ADS  MATH  Google Scholar 

  58. P. Hosseinpour, Effect of Gaussian impurity parameters on the valence and conduction subbands and thermodynamic quantities in a doped quantum wire. Solid State Commun. 322, 114061 (2020)

    Article  Google Scholar 

  59. E. Kasapoglu, I. Sökmen, Interband absorption and exciton binding energy in an inverse parabolic quantum well under the magnetic field. Phys. Lett. A 372, 56–59 (2007)

    Article  ADS  Google Scholar 

  60. F.M.S. Lima, O.A.C. Nunes, M.A. Amato, A.L.A. Fonseca, E.F. da Silva Jr, Dichotomy of the exciton wave function in semiconductors under intense laser fields. J. Appl. Phys. 103, 113112 (2008)

    Article  ADS  Google Scholar 

  61. S. Panda, T. Das, B.K. Panda, Nonlinear optical susceptibilities in InxGa1−xN/GaN hexagonal single quantum well under applied electric field. Superlattices Microstruct. 135, 106238 (2019)

    Article  Google Scholar 

  62. Z.-H. Zhang, K.-X. Guo, J.-H. Yuan, Influence of the position dependent effective mass on the nonlinear optical properties in semiparabolic and parabolic quantum well with applied magnetic field. Physica E 108, 238–243 (2019)

    Article  ADS  Google Scholar 

  63. A. Keshavarz, M.J. Karimi, Linear and nonlinear intersubband optical absorption in symmetric double semi-parabolic quantum wells. Phys. Lett. A 374, 2675–2680 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sayrac.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayrac, M., Peter, A.J. & Ungan, F. Interband transitions and exciton binding energy in a Razavy quantum well: effects of external fields and Razavy potential parameters. Eur. Phys. J. Plus 137, 840 (2022). https://doi.org/10.1140/epjp/s13360-022-03038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03038-2

Navigation