Skip to main content
Log in

Theoretical investigation of lithium-based clusters Lin (where n = 3, 5, 7) with remarkable electronic and frequency-dependent NLO properties

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Herein, we report the theoretical insight into electronic and nonlinear optical (NLO) properties of pure lithium clusters Lin (where n = 3, 5, 7) using MP2/6–311++G(d,p) and DFT theory. The optimization of clusters is carried out at MP2/6–311++G(d,p), while spectral, electronic, and NLO properties are at CAM-B3LYP functional. The studied superalkali clusters are thermodynamically stable, and their binding energies per atom range from − 8.15 to − 15.49 kcal mol−1. The calculated vertical ionization potentials (VIP) and FMOs analysis suggest their superalkali and excess electrons nature. These clusters have significantly reduced HOMO–LUMO gaps (2.78–3.41 eV). The displayed total density of states (TDOS) spectra also provide a more comprehensive picture of electronic characteristics. Being excess electron clusters, the static hyperpolarizability o) value is up to 7.77 × 104 au for Li5 where its second hyperpolarizability (γo) significantly increased up to 2.7 × 106 au. There is an excellent correlation between total hyperpolarizability and the computed vector part of hyperpolarizability vec). The two-level model (βtl) reveals that excitation energy is the main influencing factor to hyperpolarizability. Besides, dynamic hyperpolarizabilities β(ω) show remarkable values (3.2 × 106 au) for EOPE β( − ω;ω,0) effect at 532 nm. Similarly, the second-harmonic generation (SHG) phenomenon is also much more pronounced at a small dispersion frequency (ω = 532 nm). The dynamic second hyperpolarizability γ(ω) value increases up to 1.2 × 1011 au, and the results are much more pronounced at a larger dispersion frequency (1064 nm). Additionally, the dynamic NLO properties at the applied frequency of 1300 nm are much more pronounced than those of 1900 nm. The significant scattering hyperpolarizability HRS) is recorded up to 1.3 × 104 au for Li3 cluster. Hence, the studied lithium-based superalkali clusters are novel candidates for excellent electronic and NLO properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The author confirms that data supporting finding current study are available within article and in its supporting information. Raw data that support the finding of this study are available from the corresponding, upon the reasonable request.

References

  1. S.N. Khanna, P. Jena, Atomic clusters: building blocks for a class of solids. Phys. Rev. B 51(19), 13705–13716 (1995)

    Article  ADS  Google Scholar 

  2. E. Roduner, Superatom chemistry: promising properties of near-spherical noble metal clusters. Phys. Chem. Chem. Phys. 20(37), 23812–23826 (2018)

    Article  Google Scholar 

  3. A.W. Castleman, S.N. Khanna, Clusters, superatoms, and building blocks of new materials. J. Phys. Chem. C 113, 2664 (2009)

    Article  Google Scholar 

  4. I. Colliard, G. Morrison, H.-C. Zur Loye, M. Nyman, Supramolecular assembly of U (IV) clusters and superatoms with unconventional countercations”. J. Am. Chem. Soc. 142(19), 9039–9047 (2020)

    Article  Google Scholar 

  5. K. Yamamoto, T. Imaoka, M. Tanabe, T. Kambe, New horizon of nanoparticle and cluster catalysis with dendrimers. Chem. Rev. 120(2), 1397–1437 (2019)

    Article  Google Scholar 

  6. J. Tong, Y. Li, D. Wu, Z.R. Li, X.R. Huang, Low ionization potentials of binuclear superalkali B2Li 11. J. Chem. Phys. 131, 16 (2009)

    Google Scholar 

  7. G.L. Gutsev, A.I. Boldyrev, DVM Xα calculations on the electronic structure of ‘superalkali’ cations. Chem. Phys. Lett. 92(3), 262–266 (1982)

    Article  ADS  Google Scholar 

  8. D. Wang, J.D. Graham, A.M. Buytendyk, K.H. Bowen, Photoelectron spectroscopy of the molecular anions, Li3O - and Na3O-. J. Chem. Phys. 135(16), 1–5 (2011)

    Article  Google Scholar 

  9. S. Giri, S. Behera, P. Jena, Superalkalis and superhalogens as building blocks of supersalts. J. Phys. Chem. A 118(3), 638–645 (2014)

    Article  Google Scholar 

  10. Y.K. Han, J. Jung, Does the ‘superatom’ exist in halogenated aluminum clusters? J. Am. Chem. Soc. 130(1), 2–3 (2008)

    Article  Google Scholar 

  11. P. Huang, G. Chen, Z. Jiang, R. Jin, Y. Zhu, Y. Sun, Atomically precise Au 25 superatoms immobilized on CeO2 nanorods for styrene oxidation. Nanoscale 5(9), 3668–3672 (2013)

    Article  ADS  Google Scholar 

  12. T. Zhou, M. Wang, Z. Zang, X. Tang, L. Fang, Two-dimensional lead-free hybrid halide perovskite using superatom anions with tunable electronic properties. Sol. Energy Mater. Sol. Cells 191, 33–38 (2019)

    Article  Google Scholar 

  13. P. Guo, L. Fu, J. Zheng, P. Zhao, Y. Wan, Z. Jiang, Enhanced magnetism in the VLi8 magnetic superatom supported on graphene. Appl. Surf. Sci. 465, 207–211 (2019)

    Article  ADS  Google Scholar 

  14. Y. Li, D. Wu, Z.-R. Li, Compounds of superatom clusters: preferred structures and significant nonlinear optical properties of the BLi6-X (X= F, LiF2, BeF3, BF4) motifs. Inorg. Chem. 47(21), 9773–9778 (2008)

    Article  Google Scholar 

  15. R. Arun Kumar, Borate crystals for nonlinear optical and laser applications: a review”. J. Chem. (2013). https://doi.org/10.1155/2013/154862

    Article  Google Scholar 

  16. B.K. Periyasamy, R.S. Jebas, N. Gopalakrishnan, T. Balasubramanian, Development of NLO tunable band gap organic devices for optoelectronic applications. Mater. Lett. 61(21), 4246–4249 (2007)

    Article  Google Scholar 

  17. J. Liu, C. Ouyang, F. Huo, W. He, A. Cao, Progress in the enhancement of electro-optic coefficients and orientation stability for organic second-order nonlinear optical materials. Dye. Pigment. 181, 108509 (2020)

    Article  Google Scholar 

  18. S. Coiai, E. Passaglia, A. Pucci, G. Ruggeri, Nanocomposites based on thermoplastic polymers and functional nanofiller for sensor applications. Materials (Basel) 8(6), 3377–3427 (2015)

    Article  ADS  Google Scholar 

  19. H. Yu, N.Z. Koocher, J.M. Rondinelli, P.S. Halasyamani, Pb2BO3I: a borate iodide with the largest second-harmonic generation (SHG) response in the KBe2BO3F2 (KBBF) family of nonlinear optical (NLO) materials. Angew. Chemie Int. Ed. 57(21), 6100–6103 (2018)

    Article  Google Scholar 

  20. G. Yang, Z. Su, C. Qin, Theoretical study on the second-order nonlinear optical properties of asymmetric spirosilabifluorene derivatives. J. Phys. Chem. A 110(14), 4817–4821 (2006)

    Article  Google Scholar 

  21. J. Sun et al., Efficient construction of near-infrared absorption donor-acceptor copolymers with and without Pt (II)-incorporation toward broadband nonlinear optical materials. ACS Appl. Mater. Interfaces 12(2), 2944–2951 (2019)

    Article  Google Scholar 

  22. A. Painelli, Amplification of NLO responses: vibronic and solvent effects in push–pull polyenes. Chem. Phys. 245(1–3), 185–197 (1999)

    Article  Google Scholar 

  23. S.J. Wang, Y.F. Wang, C. Cai, Multidecker sandwich complexes VnBenn+1 (n = 1, 2, 3) as stronger electron donor relative to ferrocene for designing high-performance organometallic second-order nlo chromophores: evident layer effect on the first hyperpolarizability and two-dimensional N. J. Phys. Chem. C 119(10), 5589–5595 (2015)

    Article  Google Scholar 

  24. R.L. Zhong, H.L. Xu, Z.R. Li, Z.M. Su, Role of excess electrons in nonlinear optical response. J. Phys. Chem. Lett. 6(4), 612–619 (2015)

    Article  Google Scholar 

  25. H. Lee, S.-Y. An, M. Cho, Nonlinear optical (NLO) properties of the Octupolar molecule: structure− function relationships and solvent effects. J. Phys. Chem. B 103(24), 4992–4996 (1999)

    Article  Google Scholar 

  26. S. Sajjad, A. Ali, T. Mahmood, K. Ayub, Journal of Molecular Graphics and Modelling Janus alkaline earthides with excellent NLO response from sodium and potassium as source of excess electrons; a fi rst principles study. J. Mol. Graph. Model. 100, 107668 (2020)

    Article  Google Scholar 

  27. A. Ahsin, A. Ali, K. Ayub, Alkaline earth metals serving as source of excess electron for alkaline earth metals to impart large second and third order nonlinear optical response; a DFT study. J. Mol. Graph. Model. 101, 107759 (2020)

    Article  Google Scholar 

  28. W.M. Liang, Z.X. Zhao, D. Wu, W.M. Sun, Y. Li, Z.R. Li, Theoretical study on alkali-metal doped N3H3 complexes: an in-depth understanding of the origin of electride and alkalide and their large nonlinear optical properties. J. Mol. Model. 21(12), 1–9 (2015)

    Article  ADS  Google Scholar 

  29. J.J. Wang et al., An external electric field manipulated second-order nonlinear optical switch of an electride molecule: a long-range electron transfer forms a lone excess electron pair and quenches singlet diradical. J. Phys. Chem. C 120, 13656 (2016)

    Article  Google Scholar 

  30. Z.J. Li et al., A dependence on the petal number of the static and dynamic first hyperpolarizability for electride molecules: many-petal-shaped Li-doped cyclic polyamines. J. Phys. Chem. A 113, 2961 (2009)

    Article  Google Scholar 

  31. F. Ullah, N. Kosar, K. Ayub, T. Mahmood, Superalkalis as a source of diffuse excess electrons in newly designed inorganic electrides with remarkable nonlinear response and deep ultraviolet transparency: a DFT study. Appl. Surf. Sci. 483(April), 1118–1128 (2019)

    Article  ADS  Google Scholar 

  32. A. Ahsan, K. Ayub, Extremely large nonlinear optical response and excellent electronic stability of true alkaline earthides based on hexaammine complexant. J. Mol. Liq. 297, 111899 (2020)

    Article  Google Scholar 

  33. A. Ahsin, K. Ayub, Theoretical investigation of superalkali clusters M2OCN and M2NCO (where M= Li, Na, K) as excess electron system with significant static and dynamic nonlinear optical response. Optik (Stuttg.) 227, 166037 (2020)

    Article  Google Scholar 

  34. N. Hou, Y.-Y. Wu, H.-S. Wu, H.-M. He, The important role of superalkalis on the static first hyperpolarizabilities of new electrides: Theoretical investigation on superalkali-doped hexamethylenetetramine (HMT). Synth. Met. 232, 39–45 (2017)

    Article  Google Scholar 

  35. Y.-D. Song, L. Wang, Q.-T. Wang, Structures and nonlinear optical properties of alkali atom/superalkali doped pyridinic vacancy graphene. Optik (Stuttg) 154, 411–420 (2018)

    Article  ADS  Google Scholar 

  36. W.M. Sun, L.T. Fan, Y. Li, J.Y. Liu, D. Wu, Z.R. Li, On the potential application of superalkali clusters in designing novel alkalides with large nonlinear optical properties. Inorg. Chem. 53(12), 6170–6178 (2014)

    Article  Google Scholar 

  37. J. Hou, D. Jiang, J. Qin, Q. Duan, Alkaline-earthide: a new class of excess electron compounds Li-C6H6F6-M (M= Be, Mg and Ca) with extremely large nonlinear optical responses. Chem. Phys. Lett. 711, 55–59 (2018)

    Article  ADS  Google Scholar 

  38. W.-M. Sun et al., A theoretical study on superalkali-doped nanocages: unique inorganic electrides with high stability, deep-ultraviolet transparency, and a considerable nonlinear optical response. Dalt. Trans. 45(17), 7500–7509 (2016)

    Article  Google Scholar 

  39. A.K. Srivastava, N. Misra, Nonlinear optical behavior of LinF (n = 2–5) superalkali clusters. J. Mol. Model. 21(12), 1–5 (2015)

    Article  Google Scholar 

  40. A.K. Srivastava, N. Misra, M2X (M= Li, Na; X= F, Cl): the smallest superalkali clusters with significant NLO responses and electride characteristics. Mol. Simul. 42(12), 981–985 (2016)

    Article  Google Scholar 

  41. A. Ahsin, K. Ayub, Oxacarbon superalkali C3X3Y3 (X = O, S and Y = Li, Na, K ) clusters as excess electron compounds for remarkable static and dynamic NLO response”. J. Mol. Graph. Model 106, 107922 (2021)

    Article  Google Scholar 

  42. J.F. Pérez, E. Florez, C.Z. Hadad, P. Fuentealba, A. Restrepo, Stochastic search of the quantum conformational space of small lithium and bimetallic lithium− sodium clusters. J. Phys. Chem. A 112(25), 5749–5755 (2008)

    Article  Google Scholar 

  43. K. Hirao, Multireference Møller—Plesset method. Chem. Phys. Lett. 190(3–4), 374–380 (1992)

    Article  ADS  Google Scholar 

  44. M. Piris, Dynamic electron-correlation energy in the natural-orbital-functional second-order-Møller-Plesset method from the orbital-invariant perturbation theory. Phys. Rev. A 98(2), 22504 (2018)

    Article  ADS  Google Scholar 

  45. S. Kossmann, F. Neese, Efficient structure optimization with second-order many-body perturbation theory: the RIJCOSX-MP2 method. J. Chem. Theory Comput. 6(8), 2325–2338 (2010)

    Article  Google Scholar 

  46. D.M. Bates, J.R. Smith, G.S. Tschumper, Efficient and accurate methods for the geometry optimization of water clusters: application of analytic gradients for the two-body:many-body QM:QM fragmentation method to (H2O)n, n = 3–10. J. Chem. Theory Comput. 7(9), 2753–2760 (2011)

    Article  Google Scholar 

  47. A. Ahsin, K. Ayub, Extremely large static and dynamic nonlinear optical response of small superalkali clusters NM3M’(M, M’= Li, Na, K). J. Mol. Graph. Model. 109, 108031 (2021)

    Article  Google Scholar 

  48. J. Elm, K.V. Mikkelsen, Computational approaches for efficiently modelling of small atmospheric clusters. Chem. Phys. Lett. 615, 26–29 (2014)

    Article  ADS  Google Scholar 

  49. T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393(1), 51–57 (2004)

    Article  ADS  Google Scholar 

  50. A. Ahsin, K. Ayub, Remarkable electronic and NLO properties of bimetallic superalkali clusters: a DFT study. J. Nanostructure Chem. (2021). https://doi.org/10.1007/s40097-021-00429-2

    Article  Google Scholar 

  51. A. Ahsin, A.B. Shah, K. Ayub, Germanium-based superatom clusters as excess electron compounds with significant static and dynamic NLO response; a DFT study. RSC Adv. 12(1), 365–377 (2022)

    Article  ADS  Google Scholar 

  52. A.L. Tenderholt, K.M. Langner, cclib: a library for package independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008)

    Article  Google Scholar 

  53. B.G.A. Brito, G.Q. Hai, L. Cândido, Analysis of the ionization potentials of small superalkali lithium clusters based on quantum Monte Carlo simulations. Chem. Phys. Lett. 708(June), 54–60 (2018)

    Article  ADS  Google Scholar 

  54. C.H. Wu, Thermochemical properties of gaseous Li2 and Li3. J. Chem. Phys. 65(8), 3181–3186 (1976)

    Article  ADS  Google Scholar 

  55. F. Ullah, K. Ayub, T. Mahmood, Remarkable second and third order nonlinear optical properties of organometallic C6Li6− M3O electrides. New J. Chem. (2020). https://doi.org/10.1039/D0NJ01670E

    Article  Google Scholar 

  56. H. Ullah et al., Theoretical insight of polypyrrole ammonia gas sensor. Synth. Met. 172, 14–20 (2013)

    Article  Google Scholar 

  57. F. Ullah, N. Kosar, K. Ayub, T. Mahmood, Superalkalis as a source of diffuse excess electrons in newly designed inorganic electrides with remarkable nonlinear response and deep ultraviolet transparency: a DFT study. Appl. Surf. Sci. 483, 1118–1128 (2019)

    Article  ADS  Google Scholar 

  58. N. Kosar, K. Shehzadi, K. Ayub, T. Mahmood, Theoretical study on novel superalkali doped graphdiyne complexes: unique approach for the enhancement of electronic and nonlinear optical response. J. Mol. Graph. Model. 97, 107573 (2020)

    Article  Google Scholar 

  59. N. Kosar et al., Significant nonlinear optical response of alkaline earth metals doped beryllium and magnesium oxide nanocages. Mater. Chem. Phys. 242, 122507 (2020)

    Article  Google Scholar 

  60. N. Kosar, T. Mahmood, K. Ayub, S. Tabassum, M. Arshad, M.A. Gilani, Doping superalkali on Zn12O12 nanocage constitutes a superior approach to fabricate stable and high-performance nonlinear optical materials. Opt. Laser Technol. 120, 105753 (2019)

    Article  Google Scholar 

  61. A. Ahsan, K. Ayub, Adamanzane based alkaline earthides with excellent nonlinear optical response and ultraviolet transparency. Opt. Laser Technol. 129, 106298 (2020)

    Article  Google Scholar 

  62. W.-M. Sun et al., Can coinage metal atoms Be capable of serving as an excess electron source of alkalides with considerable nonlinear optical responses? Inorg. Chem. 56(8), 4594–4600 (2017)

    Article  Google Scholar 

  63. A. Ahsin, T. Jadoon, K. Ayub, M@[12-crown-4] and M@[15-crown-5] where (M=Li, Na, and K); the very first examples of non-conventional one alkali metal-containing alkalides with remarkable static and dynamic NLO response. Phys. E Low-Dimens. Syst. Nanostructures 140, 115170 (2022)

    Article  Google Scholar 

  64. A. Ahsin, K. Ayub, Superalkali-based alkalides Li3O@[12-crown-4]M (where M= Li, Na, and K) with remarkable static and dynamic NLO properties; A DFT study. Mater. Sci. Semicond. Process. 138, 106254 (2022)

    Article  Google Scholar 

  65. D. Hou, D. Wu, W.M. Sun, Y. Li, Z.R. Li, Evolution of structure, stability, and nonlinear optical properties of the heterodinuclear CNLin (n = 1–10) clusters. J. Mol. Graph. Model. 59, 92–99 (2015)

    Article  Google Scholar 

  66. J.L. Oudar, D.S. Chemla, Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 66(6), 2664–2668 (1977)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial and technical support from the higher Education Commission of Pakistan COMSATS University, Abbottabad Campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurshid Ayub.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahsin, A., Ayub, K. Theoretical investigation of lithium-based clusters Lin (where n = 3, 5, 7) with remarkable electronic and frequency-dependent NLO properties. Eur. Phys. J. Plus 137, 803 (2022). https://doi.org/10.1140/epjp/s13360-022-02971-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02971-6

Navigation