Skip to main content
Log in

Relations between the quantum correlation entropy and quantum discord for X-states in multipartite systems

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Observational entropy is a generalization of Boltzmann entropy to quantum mechanics. Observational entropy based on coarse-grained measurements has a certain relations with other quantum information measures. Quantum correlation entropy and quantum discord are both physical quantities used to measure quantum correlation. The former is based on local observational entropy. The latter is based on von Neumann projection measurements acting on some subsystems. We study the relations between quantum correlation entropy and quantum discord for N-partite X-states with 4-dimensional subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information’, 10th edn. (Cambridge University Press, New York, 2011)

    MATH  Google Scholar 

  2. M.M. Wilde, Quantum Information Theory, 2nd edn. (Cambridge University Press, Cambridge, 2017)

    Book  MATH  Google Scholar 

  3. J. Schindler, D. Šafránek, A. Aguirre, Quantum correlation entropy. Phys. Rev. A 102, 052407 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  4. D. Šafránek, J.M. Deutsch, A. Aguirre, Quantum coarse-grained entropy and thermodynamics. Phys. Rev. A 99, 010101 (2019)

    Article  Google Scholar 

  5. D. Šafránek, J.M. Deutsch, A. Aguirre, Quantum coarse-grained entropy and thermalization in closed systems. Phys. Rev. A 99, 012103 (2019)

    Article  ADS  Google Scholar 

  6. P. Strasberg, A. Winter, First and second law of quantum thermodynamics: a consistent derivation based on a microscopic definition of entropy. Phys. Rev. X 2, 030202 (2021)

    Google Scholar 

  7. D. Šafránek, A. Aguirre, J. Schindler, J.M. Deutsch, A brief introduction to observational entropy. Found. Phys. 51, 101 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. L. Henderson, V. Vedral, Classical, quantum and total correlations. J. Phys. A Gen. Phys. 34, 6899–6905 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. H. Ollivier, W.H. Zurek, Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  10. S.L. Luo, Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  11. S.L. Luo, S.S. Fu, Geometric measure of quantum discord. Phys. Rev. A 82, 0343002 (2010)

    MathSciNet  Google Scholar 

  12. C.C. Rulli, M.S. Sarandy, Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  13. C. Radhakrishnan, M. Laurière, T. Byrnes, Multipartite generalization of quantum discord. Phys. Rev. Lett. 124, 110401 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. Y. Guo, L.Z. Huang, Y. Zhang, Monogamy of quantum discord. Quantum Sci. Technol. 6, 045028 (2021)

    Article  ADS  Google Scholar 

  15. B. Li, C.L. Zhu, X.B. Liang, B.L. Ye, S.M. Fei, Quantum discord for multiqubit systems. Phys. Rev. A 104, 012428 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Dillenschneider, Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78, 224413 (2008)

    Article  ADS  Google Scholar 

  17. M.S. Sarandy, Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  18. T. Werlang, C. Trippe, G.A.P. Ribeiro, G. Rigolin, Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  19. J. Maziero, H.C. Guzman, L.C. Céleri, M.S. Sarandy, R.M. Serra, Quantum and classical thermal correlations in the XY spin-\(\frac{1}{2}\) chain. Phys. Rev. A 82, 012106 (2010)

    Article  ADS  Google Scholar 

  20. Y.X. Chen, S.W. Li, Quantum correlations in topological quantum phase transitions. Phys. Rev. A 81, 032120 (2010)

    Article  ADS  Google Scholar 

  21. B. Tomasello, D. Rossini, A. Hamma, L. Amico, Ground-state factorization and correlations with broken symmetry. Europhys. Lett. 96, 27002 (2011)

    Article  ADS  Google Scholar 

  22. A. Shabani, D.A. Lidar, Vanishing quantum discord is necessary and sufficient for completely positive maps. Phys. Rev. Lett. 102, 100402 (2009)

    Article  ADS  Google Scholar 

  23. J. Maziero, L.C. Céleri, R.M. Serra, V. Vedral, Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Ferraro, L. Aolita, D. Cavalcanti, F.M. Cucchietti, A. Acín, Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)

    Article  ADS  Google Scholar 

  25. L. Mazzola, J. Piilo, S. Maniscalco, Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  26. J. Maziero, T. Werlang, F.F. Fanchini, L.C. Céleri, R.M. Serra, System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)

    Article  ADS  Google Scholar 

  27. A. Datta, A. Shaji, C.M. Caves, Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  28. D.P. Divincenzo, M. Horodecki, D.W. Leung, J.A. Smolin, B.M. Terhal, Locking classical correlations in quantum states. Phys. Rev. Lett. 92, 067902 (2004)

    Article  ADS  Google Scholar 

  29. A. Datta, S. Gharibian, Signatures of non-classicality in mixed-state quantum computation. Phys. Rev. A 79, 042325 (2009)

    Article  ADS  Google Scholar 

  30. S. Boixo, L. Aolita, D. Cavalcanti, K. Modi, A. Winter, Quantum locking of classical correlations and quantum discord of classical-quantum states. Int. J. Quantum Inf. 09, 1643–1651 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. S.J. Wu, U.V. Poulsen, K. Mølmer, Correlations in local measurements on a quantum state, and complementarity as an explanation of nonclassicality. Phys. Rev. A 80, 032319 (2009)

    Article  ADS  Google Scholar 

  32. S. Luo, Q. Zhang, Observable correlations in two-qubit states. J. Stat. Phys. 136, 165–177 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. R.F. Werner, Quantum states with Einstein–Podolsky Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  34. Y.Q. Chen, H. Shu, Z.J. Zheng, Entanglement and nonlocality dynamics of a Bell state and the GHZ state in a noisy environment. Quantum Inf. Process. 20, 323 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  35. K. Wang, Z.J. Zheng, Violation of Svetlichny inequality in triple Jaynes-cummings models. Sci. Rep. 10, 6621 (2020)

    Article  ADS  Google Scholar 

  36. T. Yu, J.H. Eberly, Evolution from entanglement to decoherence of bipartite mixed x-states. Quantum Inf. Comput. 07, 459–468 (2007)

    MathSciNet  MATH  Google Scholar 

  37. A.R.P. Rau, Algebraic characterization of X-states in quantum information. J. Phys. A Math. Theor. 42, 412002 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. X.M. Lu, J. Ma, Z.J. Xi, X.G. Wang, Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A 83, 012327 (2010)

    Article  ADS  Google Scholar 

  39. S. Vinjanampathy, A.R.P. Rau, Generalized X states of N qubits and their symmetries. Phys. Rev. A 82, 032336 (2010)

    Article  ADS  Google Scholar 

  40. M. Ali, A.R.P. Rau, G. Alber, Quantum discord for two-qubit X-states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  41. P.C. Obando, F.M. Paula, M.S. Sarandy, Trace-distance correlations for X states and the emergence of the pointer basis in Markovian and non-Markovian regimes. Phys. Rev. A 92, 032307 (2015)

    Article  ADS  Google Scholar 

  42. F.F. Fanchini, T. Werlang, C.A. Brasil, L.G.E. Arruda, A.O. Caldeira, Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)

    Article  ADS  Google Scholar 

  43. L. Ciliberti, R. Rossignoli, N. Canosa, Quantum discord in finite XY chains. Phys. Rev. A 82, 042316 (2010)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong Basic and Applied Basic Research Foundation under Grant No. 2020B1515310016 and Key Research and Development Project of Guang dong Province under Grant No. 2020B0303300001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Jun Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zheng, ZJ. Relations between the quantum correlation entropy and quantum discord for X-states in multipartite systems. Eur. Phys. J. Plus 137, 625 (2022). https://doi.org/10.1140/epjp/s13360-022-02838-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02838-w

Navigation