Skip to main content
Log in

State transfer and maintenance for non-Markovian open quantum systems in a hybrid environment via Lyapunov control method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper concerns state transfer in a non-Markovian two-level open quantum system coupled to a hybrid bath composed of bosons and fermions based on the Lyapunov control method. First, the differential equation of the decay rate factor in the hybrid environment has been achieved and after that, the effect of bath parameters on the system characteristics is investigated to not only disclose the behavior of system dynamics but also reveal that how the bath parameters affect the coherence and purity. Next, a control field has been introduced based on the Lyapunov theory where a trace distance-based exponential form has been suggested as a Lyapunov function. Moreover, a limitation is defined on control laws in order to have control fields with upper and lower bound that is suitable from the practical point of view. Finally, considering bounded and unbounded control fields, numerical simulations have been illustrated for different situations including the state transfer between two eigenstates, between two superposition states, and from a mixed state to a superposition state. The results have been compared with a control field which has been designed by considering the conventional trace distance as a Lyapunov function. The simulation outcomes demonstrate that the proposed control field governs the system state to the desired state with more accuracy and faster convergence rate rather than the conventional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(\gamma_{1,2}\) :

Memory effect coefficients for bosonic and fermionic baths

\(\alpha_{1,2}\) :

Correlation strength coefficients for bosonic and fermionic baths

\(\Omega_{1,2}\) :

Central frequencies for bosonic and fermionic baths

\(K_{{\text{b}}}\) :

Correlation function of bosonic bath

\(K_{{\text{f}}}\) :

Correlation function of fermionic bath

\(\omega\) :

System frequency

\(g_{{\text{j}}} ; j = x,y\) :

Control coefficients

\(\theta_{{\text{j}}} ; j = x,y\) :

Disturbances

\(\beta\) :

Control constant for exponential control fields

\(\mu\) :

Threshold parameter in control fields equations

\(\tau\) :

Threshold for the amplitudes of control fields

\(\rho\) :

Density matrix

\(\rho_{{\text{f}}}\) :

Desired density matrix

\(f_{{\text{j}}} ; j = x,y\) :

External control field in the j-direction

\(t_{{\text{f}}}\) :

Final time of simulation

\(d\) :

Dimension of open quantum system

\({\mathcal{L}}_{{\text{D}}}\) :

Hybrid environment

References

  1. A. Daeichian, F. Sheikholeslam, Survey and comparison of quantum systems: modeling, stability and controllability. J. Control 5(4), 20–31 (2012)

    Google Scholar 

  2. R.R. Mogaddam, N.S. Javan, K. Javidan, H. Mohammadzadeh, Entanglement fidelity ratio for elastic collisions in non-ideal two-temperature dense plasma. Phys. Scr. 95(3), 035604 (2020)

    Article  Google Scholar 

  3. H.P. Breuer, F. Petruccione, The theory of open quantum systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  4. I. De Vega, D. Alonso, Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89(1), 015001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. D. Dong, I.R. Petersen, Quantum control theory and applications: a survey. IET Control Theory Appl. 4(12), 2651–2671 (2010)

    Article  MathSciNet  Google Scholar 

  6. C. Brif, R. Chakrabarti, H. Rabitz, Control of quantum phenomena: past, present and future. New J. Phys. 12(7), 075008 (2010)

    Article  ADS  MATH  Google Scholar 

  7. L. Levin, W. Skomorowski, L. Rybak, R. Kosloff, C.P. Koch, Z. Amitay, Coherent control of bond making. Phys. Rev. Lett. 114(23), 233003 (2015)

    Article  ADS  Google Scholar 

  8. J. Olson, Y. Cao, J. Romero, P. Johnson, P.L. Dallaire-Demers, N. Sawaya, P. Narang, I. Kivlichan, M. Wasielewski, A. Aspuru-Guzik, Quantum information and computation for chemistry. arXiv preprint arXiv:1706.05413 (2017)

  9. M. McDonald, I. Majewska, C.H. Lee, S.S. Kondov, B.H. McGuyer, R. Moszynski, T. Zelevinsky, Control of ultracold photodissociation with magnetic fie lds. Phys. Rev. Lett. 120(3), 033201 (2018)

    Article  ADS  Google Scholar 

  10. X. Wang, S. Vinjanampathy, F.W. Strauch, K. Jacobs, Ultraefficient cooling of resonators: beating sideband cooling with quantum control. Phys. Rev. Lett. 107(17), 177204 (2011)

    Article  ADS  Google Scholar 

  11. R. Kosloff, Quantum thermodynamics: a dynamical viewpoint. Entropy 15(6), 2100–2128 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. D. Gelbwaser-Klimovsky, W. Niedenzu, G. Kurizki, Thermodynamics of quantum systems under dynamical control. Adv. At. Mol. Opt. Phys. 64, 329–407 (2015)

    Article  ADS  MATH  Google Scholar 

  13. M. Farahmand, H. Mohammadzadeh, H. Mehri-Dehnavi, Quantum thermodynamics and quantum entanglement entropies in an expanding universe. Int. J. Mod. Phys. A 32(15), 1750066 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. S. Pang, A.N. Jordan, Optimal adaptive control for quantum metrology with time-dependent Hamiltonians. Nat. Commun. 8(1), 1–9 (2017)

    Article  ADS  Google Scholar 

  15. F. Poggiali, P. Cappellaro, N. Fabbri, Optimal control for one-qubit quantum sensing. Phys. Rev. X 8(2), 021059 (2018)

    Google Scholar 

  16. L.M. Vandersypen, I.L. Chuang, NMR techniques for quantum control and computation. Rev. Mod. Phys. 76(4), 1037 (2005)

    Article  ADS  Google Scholar 

  17. H. Mehri-Dehnavi, H. Dashtianeh, H.Y. Kuchaksaraei, M.M. Khoshdareh, H. Movahhedian, R. Rahimi, A Modified Quantum Search Algorithm. Int. J. Theor. Phys. 57(12), 3668–3681 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Werschnik, E.K.U. Gross, Quantum optimal control theory. J. Phys. B At. Mol. Opt. Phys. 40(18), R175 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  19. S.J. Glaser, U. Boscain, T. Calarco, C.P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, F.K. Wilhelm, Training Schrödinger’s cat: quantum optimal control. Eur. Phys. J. D 69(12), 1–24 (2015)

    Article  ADS  Google Scholar 

  20. S. Fu, M.Z. Chen, Optimal control of single spin-1/2 quantum systems. IET Control Theory Appl. 8(2), 86–93 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Daeichian, F. Sheikholeslam, Behaviour of two-level quantum system driven by non-classical inputs. IET Control Theory Appl. 7(15), 1877–1887 (2013)

    Article  MathSciNet  Google Scholar 

  22. A. Daeichian, State estimation of a quantum cavity driven by single-photon. In 2019 6th International Conference on Control, Instrumentation and Automation (ICCIA), pp. 1–5. IEEE (2019)

  23. A. Daeichian, S. Aghaei, Estimating the state of a one-sided quantum cavity driven by vacuum field in Schrödinger picture. In 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA), pp. 1–5. IEEE (2021)

  24. D. Mansouri, B. Rezaie, R.N. Abolfazl, A. Daeichian, The dynamic of a quantum optomechanical cavity cascaded with a two-level atom. In 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA), pp. 1–4. IEEE (2021)

  25. S. Harraz, S. Cong, K. Li, Two-qubit state recovery from amplitude damping based on weak measurement. Quantum Inf. Process. 19(8), 1–22 (2020)

    Article  MathSciNet  Google Scholar 

  26. S. Qamar, S. Cong, Observer-based feedback control of two-level open stochastic quantum system. J. Franklin Inst. 356(11), 5675–5691 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. A.C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, S.M. Tan, Quantum feedback control and classical control theory. Phys. Rev. A 62(1), 012105 (2000)

    Article  ADS  Google Scholar 

  28. W. Cui, F. Nori, Feedback control of Rabi oscillations in circuit QED. Phys. Rev. A 88(6), 063823 (2013)

    Article  ADS  Google Scholar 

  29. M.R. James, H.I. Nurdin, I.R. Petersen, H ∞ Control of Linear Quantum Stochastic Systems. IEEE Trans. Autom. Control 53(8), 1787–1803 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Dong, I.R. Petersen, Sliding mode control of quantum systems. New J. Phys. 11(10), 105033 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  31. D. Dong, I.R. Petersen, Sliding mode control of two-level quantum systems. Automatica 48(5), 725–735 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. S.C. Hou, L.C. Wang, X.X. Yi, Realization of quantum gates by Lyapunov control. Phys. Lett. A 378(9), 699–704 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. S.C. Hou, M.A. Khan, X.X. Yi, D. Dong, I.R. Petersen, Optimal Lyapunov-based quantum control for quantum systems. Phys. Rev. A 86(2), 022321 (2012)

    Article  ADS  Google Scholar 

  34. C. Shuang, H.U. Long-Zhen, Y.A.N.G. Fei, L.I.U. Jian-Xiu, Characteristics analysis and state transfer for non-Markovian open quantum systems. Acta Automa. Sin. 39(4), 360–370 (2013)

    Google Scholar 

  35. S. Kuang, S. Cong, Lyapunov control methods of closed quantum systems. Automatica 44(1), 98–108 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. X. Wang, S.G. Schirmer, Analysis of Lyapunov method for control of quantum states. IEEE Trans. Autom. Control 55(10), 2259–2270 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Wen, S. Cong, Transfer from arbitrary pure state to target mixed state for quantum systems. IFAC Proc. Vol. 44(1), 4638–4643 (2011)

    Article  Google Scholar 

  38. J. Hu, Q. Ke, Y. Ji, Orbit tracking of quantum state in open quantum systems based on Lyapunov control method. Optik 148, 350–357 (2017)

    Article  ADS  Google Scholar 

  39. Y. Ji, J. Hu, Rapid state transfer for a two-level non-Markovian quantum system. Optik 142, 489–496 (2017)

    Article  ADS  Google Scholar 

  40. J. Hu, Y. Ji, Q. Ke, Orbit tracking of quantum state for non-Markovian quantum system based on model reference adaptive control. Int. J. Theory Phys. 56(10), 3129–3138 (2017)

    Article  MATH  Google Scholar 

  41. J. Hu, Q. Ke, Y. Ji, Lyapunov-based state transfer and maintenance for non-Markovian quantum system. Int. J. Mod. Phys. B 30(25), 1650177 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Z. Huang, Optimal control on the transfer of the non-Markovian quantum states. Optik 127(20), 8685–8692 (2016)

    Article  ADS  Google Scholar 

  43. B. Vacchini, H.P. Breuer, Exact master equations for the non-Markovian decay of a qubit. Phys. Rev. A 81(4), 042103 (2010)

    Article  ADS  Google Scholar 

  44. X. Hu, R. de Sousa, S.D. Sarma, Decoherence and dephasing in spin-based solid state quantum computers. In Foundations Of Quantum Mechanics In The Light Of New Technology: ISQM—Tokyo’01, pp. 3–11 (2002)

  45. G. Ritschel, J. Roden, W.T. Strunz, A. Eisfeld, An efficient method to calculate excitation energy transfer in light-harvesting systems: application to the Fenna–Matthews–Olson complex. New J. Phys. 13(11), 113034 (2011)

    Article  ADS  Google Scholar 

  46. N. Lambert, F. Nori, Detecting quantum-coherent nanomechanical oscillations using the current-noise spectrum of a double quantum dot. Phys. Rev. B 78(21), 214302 (2008)

    Article  ADS  Google Scholar 

  47. C.W. Gardiner, P. Zoller, Quantum noise (Springer-Verlag, Berlin, 2004)

    MATH  Google Scholar 

  48. X. Zhao, W. Shi, J.Q. You, T. Yu, Non-Markovian dynamics of quantum open systems embedded in a hybrid environment. Ann. Phys. 381, 121–136 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. L. Diósi, N. Gisin, W.T. Strunz, Non-Markovian quantum state diffusion. Phys. Rev. A 58(3), 1699 (1998); see also W.T. Strunz, L. Diósi, N. Gisin, Open system dynamics with non-Markovian quantum trajectories. Phys. Rev. Lett. 82(9), 1801 (1999)

  50. W.T. Strunz, T. Yu, Convolutionless non-Markovian master equations and quantum trajectories: Brownian motion. Phys. Rev. A 69(5), 052115 (2004)

    Article  ADS  Google Scholar 

  51. J. Jing, T. Yu, Non-Markovian relaxation of a three-level system: quantum trajectory approach. Phys. Rev. Lett. 105(24), 240403 (2010)

    Article  ADS  Google Scholar 

  52. J. Jing, X. Zhao, J.Q. You, T. Yu, Time-local quantum-state-diffusion equation for multilevel quantum systems. Phys. Rev. A 85(4), 042106 (2012)

    Article  ADS  Google Scholar 

  53. X. Zhao, J. Jing, B. Corn, T. Yu, Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum-state-diffusion approach. Phys. Rev. A 84(3), 032101 (2011)

    Article  ADS  Google Scholar 

  54. C.J. Broadbent, J. Jing, T. Yu, J.H. Eberly, Solving non-Markovian open quantum systems with multi-channel reservoir coupling. Ann. Phys. 327(8), 1962–1973 (2012)

    Article  ADS  MATH  Google Scholar 

  55. X. Zhao, W. Shi, L.A. Wu, T. Yu, Fermionic stochastic Schrödinger equation and master equation: An open-system model. Phys. Rev. A 86(3), 032116 (2012)

    Article  ADS  Google Scholar 

  56. R.P. Feynman, F.L. Vernon Jr., The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 281(1–2), 547–607 (2000)

    Article  ADS  Google Scholar 

  57. B.L. Hu, J.P. Paz, Y. Zhang, Quantum Brownian motion in a general environment. II. Nonlinear coupling and perturbative approach. Phys. Rev. D 47(4), 1576 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  58. A.O. Caldeira, A.J. Leggett, Path integral approach to quantum Brownian motion. Phys. A 121(3), 587–616 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  59. N. Gisin, I.C. Percival, The quantum-state diffusion model applied to open systems. J. Phys. A Math. Gen. 25(21), 5677 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. J. Dalibard, Y. Castin, K. Mølmer, Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68(5), 580 (1992)

    Article  ADS  Google Scholar 

  61. E.L. Hahn, Spin echoes. Phys. Rev. 80(4), 580 (1950)

    Article  ADS  MATH  Google Scholar 

  62. H.M. Wiseman, G.J. Milburn, Quantum theory of optical feedback via homodyne detection. Phys. Rev. Lett. 70(5), 548 (1993)

    Article  ADS  Google Scholar 

  63. J. Liu, S. Cong, in Manipulation of NOT gate in Non-Markovian open quantum systems. In Proceeding of the 11th World Congress on Intelligent Control and Automation, pp. 1231–1236. IEEE (2014)

  64. M.W. Tu, W.M. Zhang, Non-Markovian decoherence theory for a double-dot charge qubit. Phys. Rev. B 78(23), 235311 (2008)

    Article  ADS  Google Scholar 

  65. Z. Xi, Y. Li, H. Fan, Quantum coherence and correlations in quantum system. Sci. Rep. 5(1), 1–9 (2015)

    Google Scholar 

  66. T. Baumgratz, M. Cramer, M.B. Plenio, Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  67. S. Cong, Control of quantum systems: theory and methods (John Wiley & Sons, 2014)

    Book  MATH  Google Scholar 

  68. K. Blum, Density matrix theory and applications (Springer Science & Business Media, Berlin, 2012)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Rahmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khari, S., Rahmani, Z., Daeichian, A. et al. State transfer and maintenance for non-Markovian open quantum systems in a hybrid environment via Lyapunov control method. Eur. Phys. J. Plus 137, 533 (2022). https://doi.org/10.1140/epjp/s13360-022-02713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02713-8

Navigation