Skip to main content
Log in

Central charge criticality of charged AdS black hole surrounded by different fluids

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We analyze the extended phase space thermodynamics of Kiselev black hole introducing a central charge and allowing the gravitational constant to vary. We also discuss the relation between the chemical potential and the size of the black hole, besides the new description of phase transitions. We obtain as a conclusion that the universality of the central charge does not remain valid in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Notes

  1. In Sects. 2.23 and 4, we shall be considering the effects of assuming G as a local thermodynamic variable that will contribute to the first law of thermodynamics, like the black hole area or electric charge.

  2. Let us be more explicit about the notation used: In fact, Kiselev’s stress-energy tensor does not describe a perfect fluid, as highlighted in [52, 53]; however, an average equation of state parameter can be defined, which is given by \(\omega \). This issue is also discussed in the second section of [54].

References

  1. J.D. Bekenstein, Black holes and the second law. Lett. Nuovo Cim. 4, 737–740 (1972). https://doi.org/10.1007/BF02757029

    Article  ADS  Google Scholar 

  2. J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973). https://doi.org/10.1103/PhysRevD.7.2333

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. J.M. Bardeen, B. Carter, S.W. Hawking, The Four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973). https://doi.org/10.1007/BF01645742

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. S.W. Hawking, Particle Creation by Black Holes. Commun. Math. Phys. 43, 199–220 (1975). https://doi.org/10.1007/BF02345020. [Erratum: Commun. Math. Phys. 46, 206 (1976)]

  5. S.W. Hawking, D.N. Page, Thermodynamics of black holes in anti-de sitter space. Commun. Math. Phys. 87, 577 (1983). https://doi.org/10.1007/BF01208266

    Article  ADS  MathSciNet  Google Scholar 

  6. R.-G. Cai, D.-W. Pang, A. Wang, Born-infeld black holes in (A)dS spaces. Phys. Rev. D 70, 124034 (2004). https://doi.org/10.1103/PhysRevD.70.124034arXiv:hep-th/0410158

    Article  ADS  MathSciNet  Google Scholar 

  7. de la Cruz-Dombriz, A., Dobado, A., Maroto, A.L.: Black Holes in f(R) theories. Phys. Rev. D 80, 124011 (2009) arXiv:0907.3872 [gr-qc]. https://doi.org/10.1103/PhysRevD.80.124011. [Erratum: Phys.Rev.D 83, 029903 (2011)]

  8. V. Faraoni, Black hole entropy in scalar-tensor and f(R) gravity: an overview. Entropy 12, 1246 (2010). https://doi.org/10.3390/e12051246arXiv:1005.2327 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. J.P. Morais Graça, I.P. Lobo, I.G. Salako, Cloud of strings in \(f(R)\) gravity. Chin. Phys. C 42(6), 063105 (2018). https://doi.org/10.1088/1674-1137/42/6/063105arXiv:1708.08398 [gr-qc]

    Article  ADS  Google Scholar 

  10. R.C. Myers, J.Z. Simon, Black hole thermodynamics in Lovelock gravity. Phys. Rev. D 38, 2434–2444 (1988). https://doi.org/10.1103/PhysRevD.38.2434

    Article  ADS  MathSciNet  Google Scholar 

  11. D. Blas, S. Sibiryakov, Horava gravity versus thermodynamics: the black hole case. Phys. Rev. D 84, 124043 (2011). https://doi.org/10.1103/PhysRevD.84.124043arXiv:1110.2195 [hep-th]

    Article  ADS  Google Scholar 

  12. R.M. Wald, The thermodynamics of black holes. Living Rev. Rel. 4, 6 (2001). https://doi.org/10.12942/lrr-2001-6arXiv:gr-qc/9912119

    Article  MATH  Google Scholar 

  13. C. Teitelboim, The cosmological constant as a thermodynamic black hole parameter. Phys. Lett. B 158, 293–297 (1985). https://doi.org/10.1016/0370-2693(85)91186-4

    Article  ADS  Google Scholar 

  14. J.D. Brown, C. Teitelboim, Neutralization of the cosmological constant by membrane creation. Nucl. Phys. B 297, 787–836 (1988). https://doi.org/10.1016/0550-3213(88)90559-7

    Article  ADS  MathSciNet  Google Scholar 

  15. J.D.E. Creighton, R.B. Mann, Quasilocal thermodynamics of dilaton gravity coupled to gauge fields. Phys. Rev. D 52, 4569–4587 (1995). https://doi.org/10.1103/PhysRevD.52.4569arXiv:gr-qc/9505007

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Kastor, S. Ray, J. Traschen, Enthalpy and the mechanics of AdS black holes. Class. Quant. Grav. 26, 195011 (2009). https://doi.org/10.1088/0264-9381/26/19/195011arXiv:0904.2765 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. D. Kubiznak, R.B. Mann, P-V criticality of charged AdS black holes. JHEP 07, 033 (2012). https://doi.org/10.1007/JHEP07(2012)033arXiv:1205.0559 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. D. Kubiznak, R.B. Mann, M. Teo, Black hole chemistry: thermodynamics with Lambda. Class. Quant. Grav. 34(6), 063001 (2017). https://doi.org/10.1088/1361-6382/aa5c69arXiv:1608.06147 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. S. Fernando, P-V criticality in AdS black holes of massive gravity. Phys. Rev. D 94(12), 124049 (2016). https://doi.org/10.1103/PhysRevD.94.124049arXiv:1611.05329 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  20. M.-S. Ma, R.-H. Wang, Peculiar \(P-V\) criticality of topological Hořava-Lifshitz black holes. Phys. Rev. D 96(2), 024052 (2017). https://doi.org/10.1103/PhysRevD.96.024052arXiv:1707.09156 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  21. S.H. Hendi, Z. Armanfard, Extended phase space thermodynamics and \(P-V\) criticality of charged black holes in Brans-Dicke theory. Gen. Rel. Grav. 47(10), 125 (2015). https://doi.org/10.1007/s10714-015-1965-6arXiv:1503.07070 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. B.R. Majhi, S. Samanta, P-V criticality of AdS black holes in a general framework. Phys. Lett. B 773, 203–207 (2017). https://doi.org/10.1016/j.physletb.2017.08.038arXiv:1609.06224 [gr-qc]

    Article  ADS  Google Scholar 

  23. I.P. Lobo, H. Moradpour, J.P. Morais Graça, I.G. Salako, Thermodynamics of black holes in Rastall gravity. Int. J. Mod. Phys. D 27(07), 1850069 (2018). https://doi.org/10.1142/S0218271818500694arXiv:1710.04612 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  24. C.V. Johnson, Holographic heat engines. Class. Quant. Grav. 31, 205002 (2014). https://doi.org/10.1088/0264-9381/31/20/205002arXiv:1404.5982 [hep-th]

    Article  ADS  MATH  Google Scholar 

  25. B. Eslam Panah, K. Jafarzade, S.H. Hendi, Charged 4D Einstein-Gauss-Bonnet-AdS black holes: Shadow, energy emission, deflection angle and heat engine. Nucl. Phys. B 961, 115269 (2020). https://doi.org/10.1016/j.nuclphysb.2020.115269arXiv:2004.04058 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  26. D.V. Singh, S. Siwach, Thermodynamics and P-v criticality of Bardeen-AdS black hole in 4\(D\) Einstein-Gauss-Bonnet gravity. Phys. Lett. B 808, 135658 (2020). https://doi.org/10.1016/j.physletb.2020.135658arXiv:2003.11754 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  27. J.P. Morais Graça, I.P. Lobo, V.B. Bezerra, H. Moradpour, Effects of a string cloud on the criticality and efficiency of AdS black holes as heat engines. Eur. Phys. J. C 78(10), 823 (2018). https://doi.org/10.1140/epjc/s10052-018-6277-zarXiv:1806.02913 [gr-qc]

    Article  ADS  Google Scholar 

  28. V.B. Bezerra, I.P. Lobo, J.P. Morais Graça, L.C.N. Santos, Effects of quantum corrections on the criticality and efficiency of black holes surrounded by a perfect fluid. Eur. Phys. J. C 79(11), 949 (2019). https://doi.org/10.1140/epjc/s10052-019-7482-0arXiv:1908.08140 [gr-qc]

    Article  ADS  Google Scholar 

  29. C.V. Johnson, Born-Infeld AdS black holes as heat engines. Class. Quant. Grav. 33(13), 135001 (2016). https://doi.org/10.1088/0264-9381/33/13/135001arXiv:1512.01746 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. A. Karch, B. Robinson, Holographic black hole chemistry. JHEP 12, 073 (2015). https://doi.org/10.1007/JHEP12(2015)073arXiv:1510.02472 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. D. Kastor, S. Ray, J. Traschen, Chemical potential in the first law for holographic entanglement entropy. JHEP 11, 120 (2014). https://doi.org/10.1007/JHEP11(2014)120arXiv:1409.3521 [hep-th]

    Article  ADS  Google Scholar 

  32. W. Cong, D. Kubiznak, R.B. Mann, Thermodynamics of AdS black holes: critical behavior of the central charge. Phys. Rev. Lett. 127(9), 091301 (2021). https://doi.org/10.1103/PhysRevLett.127.091301arXiv:2105.02223 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  33. M.R. Visser, Holographic thermodynamics requires a chemical potential for color (2021) arXiv:2101.04145 [hep-th]

  34. W. Cong, D. Kubiznak, R. Mann, M. Visser, Holographic CFT phase transitions and criticality for charged AdS black holes (2021) arXiv:2112.14848 [hep-th]

  35. V. Faraoni, Cosmology in Scalar Tensor Gravity (2004). https://doi.org/10.1007/978-1-4020-1989-0

  36. C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935 (1961). https://doi.org/10.1103/PhysRev.124.925

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. J.P. Uzan, Varying constants, gravitation and cosmology. Liv. Rev. Rel. 14, 2 (2011). https://doi.org/10.12942/lrr-2011-2arXiv:1009.5514 [astro-ph.CO]

    Article  MATH  Google Scholar 

  38. H. Desmond, J. Sakstein, B. Jain, Five percent measurement of the gravitational constant in the large magellanic cloud. Phys. Rev. D 103(2), 024028 (2021). https://doi.org/10.1103/PhysRevD.103.024028arXiv:2012.05028 [astro-ph.CO]

    Article  ADS  Google Scholar 

  39. J.F. Donoghue, General relativity as an effective field theory: the leading quantum corrections. Phys. Rev. D 50, 3874–3888 (1994). https://doi.org/10.1103/PhysRevD.50.3874arXiv:gr-qc/9405057

    Article  ADS  Google Scholar 

  40. M.M. Anber, J.F. Donoghue, On the running of the gravitational constant. Phys. Rev. D 85, 104016 (2012). https://doi.org/10.1103/PhysRevD.85.104016arXiv:1111.2875 [hep-th]

    Article  ADS  Google Scholar 

  41. M. Reuter, F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation. Phys. Rev. D 65, 065016 (2002). https://doi.org/10.1103/PhysRevD.65.065016arXiv:hep-th/0110054

    Article  ADS  MathSciNet  Google Scholar 

  42. M. Niedermaier, The asymptotic safety scenario in quantum gravity: an introduction. Class. Quant. Grav. 24, 171–230 (2007). https://doi.org/10.1088/0264-9381/24/18/R01arXiv:gr-qc/0610018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. A. Adeifeoba, A. Eichhorn, A. Platania, Towards conditions for black-hole singularity-resolution in asymptotically safe quantum gravity. Class. Quant. Grav. 35(22), 225007 (2018). https://doi.org/10.1088/1361-6382/aae6efarXiv:1808.03472 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. A. Eichhorn, An asymptotically safe guide to quantum gravity and matter. Front. Astron. Space Sci. 5, 47 (2019). https://doi.org/10.3389/fspas.2018.00047arXiv:1810.07615 [hep-th]

    Article  ADS  Google Scholar 

  45. A. Addazi, et al., Quantum gravity phenomenology at the dawn of the multi-messenger era – a review (2021) arXiv:2111.05659 [hep-ph]

  46. V.V. Kiselev, Quintessence and black holes. Class. Quant. Grav. 20, 1187–1198 (2003). https://doi.org/10.1088/0264-9381/20/6/310arXiv:gr-qc/0210040

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. S. Chen, B. Wang, R. Su, Hawking radiation in a \(d\)-dimensional static spherically-symmetric black Hole surrounded by quintessence. Phys. Rev. D 77, 124011 (2008). https://doi.org/10.1103/PhysRevD.77.124011arXiv:0801.2053 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Eichhorn, Asymptotically safe gravity. In: 57th International School of Subnuclear Physics: In Search for the Unexpected (2020)

  49. A. Younas, S. Hussain, M. Jamil, S. Bahamonde, Strong gravitational lensing by Kiselev black hole. Phys. Rev. D 92(8)(2015). https://doi.org/10.1103/PhysRevD.92.084042. arXiv:1502.01676 [gr-qc]

  50. M. Rizwan, M. Jamil, A. Wang, Distinguishing a rotating Kiselev black hole from a naked singularity using the spin precession of a test gyroscope. Phys. Rev. D 98(2), 024015 (2018) arXiv:1802.04301 [gr-qc]. https://doi.org/10.1103/PhysRevD.98.024015. [Erratum: Phys.Rev.D 100, 029902 (2019)]

  51. J. Rayimbaev, B. Majeed, M. Jamil, K. Jusufi, A. Wang, Quasiperiodic oscillations, quasinormal modes and shadows of Bardeen-Kiselev black holes. Phys. Dark Univ. 35(2022). https://doi.org/10.1016/j.dark.2021.100930. arXiv:2202.11509 [gr-qc]

  52. M. Visser, The Kiselev black hole is neither perfect fluid, nor is it quintessence. Class. Quant. Grav. 37(4), 045001 (2020). https://doi.org/10.1088/1361-6382/ab60b8arXiv:1908.11058 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. P. Boonserm, T. Ngampitipan, A. Simpson, M. Visser, Decomposition of the total stress energy for the generalized Kiselev black hole. Phys. Rev. D 101(2), 024022 (2020). https://doi.org/10.1103/PhysRevD.101.024022arXiv:1910.08008 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  54. I.P. Lobo, M.G. Richarte, J.P. Morais Graça, H. Moradpour, Thin-shell wormholes in Rastall gravity. Eur. Phys. J. Plus 135(7), 550 (2020). https://doi.org/10.1140/epjp/s13360-020-00553-yarXiv:2007.05641 [gr-qc]

    Article  Google Scholar 

  55. V. Sahni, Dark matter and dark energy. Lect. Notes Phys. 653, 141–180 (2004). https://doi.org/10.1007/b99562arXiv:astro-ph/0403324

    Article  ADS  MATH  Google Scholar 

  56. R.R. Caldwell, A phantom menace? Phys. Lett. B 545, 23–29 (2002). https://doi.org/10.1016/S0370-2693(02)02589-3arXiv:astro-ph/9908168

    Article  ADS  Google Scholar 

  57. F.R. Tangherlini, Schwarzschild field in n dimensions and the dimensionality of space problem. Nuovo Cim. 27, 636–651 (1963). https://doi.org/10.1007/BF02784569

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. G. Kunstatter, d-dimensional black hole entropy spectrum from quasinormal modes. Phys. Rev. Lett. 90, 161301 (2003). https://doi.org/10.1103/PhysRevLett.90.161301arXiv:gr-qc/0212014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. R.-J. Yang, H. Gao, Constraints from accretion onto a Tangherlini-Reissner-Nordstrom black hole (2018) arXiv:1801.07973 [gr-qc]

  60. B. Wu, W. Liu, H. Tang, R.-H. Yue, Destroying charged black holes in higher dimensions with test particles. Int. J. Mod. Phys. A 32(21), 1750125 (2017). https://doi.org/10.1142/S0217751X17501251

    Article  ADS  MATH  Google Scholar 

  61. R. Emparan, H.S. Reall, Black holes in higher dimensions. Living Rev. Rel. 11, 6 (2008). https://doi.org/10.12942/lrr-2008-6arXiv:0801.3471 [hep-th]

  62. A. Jawad, I. Siddique, I.P. Lobo, W.U. Salam, Effects of Gauss-Bonnet entropy on thermodynamics of Kiselev black hole. Int. J. Mod. Phys. D 29, 2050101 (2020). https://doi.org/10.1142/S0218271820501011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. M. Cvetic, G.W. Gibbons, D. Kubiznak, C.N. Pope, Black hole enthalpy and an entropy inequality for the thermodynamic volume. Phys. Rev. D 84(2011). https://doi.org/10.1103/PhysRevD.84.024037. arXiv:1012.2888 [hep-th]

  64. M. Azreg-Aïnou, Charged de Sitter-like black holes: quintessence-dependent enthalpy and new extreme solutions. Eur. Phys. J. C 75(1), 34 (2015). https://doi.org/10.1140/epjc/s10052-015-3258-3arXiv:1410.1737 [gr-qc]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I. P. L. would like to acknowledge the contribution of the COST Action CA18108. I. P. L. was partially supported by the National Council for Scientific and Technological Development - CNPq grant 306414/2020-1. R. B. A. was partially supported by the Tutoring Program of the Federal University of Lavras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Lobo.

Additional information

R. B. Alfaia, I. P. Lobo and L. C. T. Brito have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfaia, R.B., Lobo, I.P. & Brito, L.C.T. Central charge criticality of charged AdS black hole surrounded by different fluids. Eur. Phys. J. Plus 137, 402 (2022). https://doi.org/10.1140/epjp/s13360-022-02623-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02623-9

Navigation