Skip to main content
Log in

Power-law random banded matrix ensemble as the effective model for many-body localization transition

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We employ the power-law random banded matrix (PRBM) ensemble with single tuning parameter \(\mu \) as the effective model for many-body localization (MBL) transition in random spin systems. We show the PRBM accurately reproduces the eigenvalue statistics on the entire phase diagram through the fittings of high-order spacing ratio distributions \(P(r^{(n)})\) as well as number variance \(\Sigma ^{2}(l)\), in systems both with and without time-reversal symmetry. For the properties of eigenvectors, it’s shown the entanglement entropy of PRBM displays an evolution from volume-law to area-law behavior which signatures an ergodic–MBL transition, and the critical exponent is found to be \(\nu =0.83\pm 0.15\), close to the value obtained in 1D physical model by exact diagonalization, while the computational cost here is much less.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the figures within this paper are available from the corresponding author upon reasonable request.]

References

  1. I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Phys. Rev. Lett. 95, 206603 (2005)

    Article  ADS  Google Scholar 

  2. I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Phys. Rev. Lett. 95, 046404 (2005)

    Article  ADS  Google Scholar 

  3. D.M. Basko, I.L. Aleiner, B.L. Altshuler, Ann. Phys. 321, 1126 (2006)

    Article  ADS  Google Scholar 

  4. J.A. Kjall, J.H. Bardarson, F. Pollmann, Phys. Rev. Lett. 113, 107204 (2014)

    Article  ADS  Google Scholar 

  5. Z.C. Yang, C. Chamon, A. Hamma, E.R. Mucciolo, Phys. Rev. Lett. 115, 267206 (2015)

    Article  ADS  Google Scholar 

  6. M. Serbyn, A.A. Michailidis, M.A. Abanin, Z. Papic, Phys. Rev. Lett. 117, 160601 (2016)

    Article  ADS  Google Scholar 

  7. J. Gray, S. Bose, A. Bayat, Phys. Rev. B 97, 201105 (2018)

    Article  ADS  Google Scholar 

  8. M. Serbyn, Z. Papić, D.A. Abanin, Phys. Rev. X 5, 041047 (2015)

    Google Scholar 

  9. H. Kim, D.A. Huse, Phys. Rev. Lett. 111, 127205 (2013)

    Article  ADS  Google Scholar 

  10. M. Znidaric, T. Prosen, P. Prelovsek, Phys. Rev. B 77, 064426 (2008)

    Article  ADS  Google Scholar 

  11. J.H. Bardarson, F. Pollman, J.E. Moore, Phys. Rev. Lett. 109, 017202 (2012)

    Article  ADS  Google Scholar 

  12. M. Serbyn, Z. Papić, D.A. Abanin, Phys. Rev. B 90, 174302 (2014)

    Article  ADS  Google Scholar 

  13. V. Oganesyan, D.A. Huse, Phys. Rev. B 75, 155111 (2007)

    Article  ADS  Google Scholar 

  14. Y. Avishai, J. Richert, R. Berkovits, Phys. Rev. B 66, 052416 (2002)

    Article  ADS  Google Scholar 

  15. N. Regnault, R. Nandkishore, Phys. Rev. B 93, 104203 (2016)

    Article  ADS  Google Scholar 

  16. S.D. Geraedts, R. Nandkishore, N. Regnault, Phys. Rev. B 93, 174202 (2016)

    Article  ADS  Google Scholar 

  17. V. Oganesyan, A. Pal, D.A. Huse, Phys. Rev. B 80, 115104 (2009)

    Article  ADS  Google Scholar 

  18. A. Pal, D.A. Huse, Phys. Rev. B 82, 174411 (2010)

    Article  ADS  Google Scholar 

  19. S. Iyer, V. Oganesyan, G. Refael, D.A. Huse, Phys. Rev. B 87, 134202 (2013)

    Article  ADS  Google Scholar 

  20. D.J. Luitz, N. Laflorencie, F. Alet, Phys. Rev. B 91, 081103(R) (2015)

    Article  ADS  Google Scholar 

  21. C.L. Bertrand, A.M. García-García, Phys. Rev. B 94, 144201 (2016)

    Article  ADS  Google Scholar 

  22. M.L. Mehta, Random Matrix Theory (Springer, New York, 1990)

    Google Scholar 

  23. F. Haake, Quantum Signatures of Chaos, (Springer 2001)

  24. P. Shukla, New J. Phys. 18, 021004 (2016)

    Article  ADS  Google Scholar 

  25. M. Serbyn, J.E. Moore, Phys. Rev. B 93, 041424(R) (2016)

    Article  ADS  Google Scholar 

  26. E.B. Bogomolny, U. Gerland, C. Schmit, Eur. Phys. J. B 19, 121 (2001)

    Article  ADS  Google Scholar 

  27. W.-J. Rao, J. Phys. A: Math. Theor. 54, 105001 (2021)

    Article  ADS  Google Scholar 

  28. W.-J. Rao, Physica A: Statistical Mech Appl 590, 126689 (2022)

    Article  Google Scholar 

  29. P. Sierant, J. Zakrzewski, Phys. Rev. B 99, 104205 (2019)

    Article  ADS  Google Scholar 

  30. W. Buijsman, V. Cheianov, V. Gritsev, Phys. Rev. Lett. 122, 180601 (2019)

    Article  ADS  Google Scholar 

  31. P. Sierant, J. Zakrzewski, Phys. Rev. B 101, 104201 (2020)

    Article  ADS  Google Scholar 

  32. A.D. Mirlin, Y.V. Fyodorov, F.-M. Dittes, J. Quezada, T.H. Seligman, Phys. Rev. E 54, 3221 (1996)

    Article  ADS  Google Scholar 

  33. F. Evers, A.D. Mirlin, Phys. Rev. Lett. 84, 3690 (2000)

    Article  ADS  Google Scholar 

  34. A.D. Mirlin, F. Evers, Phys. Rev. B 62, 7920 (2000)

    Article  ADS  Google Scholar 

  35. F. Evers, A.D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008)

    Article  ADS  Google Scholar 

  36. V.E. Kravtsov, K.A. Muttalib, Phys. Rev. Lett. 79, 1913 (1997)

    Article  ADS  Google Scholar 

  37. J.A. Méndez-Bermúdez, A. Alcazar-López, I. Varga, EPL 98, 37006 (2012)

    Article  ADS  Google Scholar 

  38. J. A. Méndez-Bermúdez, A. Alcazar-López, I. Varga, J. Stat. Mech. p. 11012 (2014)

  39. I. Varga, Phys. Rev. B 66, 094201 (2002)

    Article  ADS  Google Scholar 

  40. J.A. Méndez-Bermúdez, I. Varga, Phys. Rev. B 74, 125114 (2006)

    Article  ADS  Google Scholar 

  41. I. Varga, D. Braun, Phys. Rev. B 61, 11859 (2000)

    Article  ADS  Google Scholar 

  42. X. Cao, A. Rosso, J.-P. Bouchaud, P. Le Doussal, Phys. Rev. E 95, 062118 (2017)

    Article  ADS  Google Scholar 

  43. V. Khemani, D.N. Sheng, D.A. Huse, Phys. Rev. Lett. 119, 075702 (2017)

    Article  ADS  Google Scholar 

  44. M. Carrera-Núñez, A.M. Martínez-Argüello, J.A. Méndez-Bermúdez, Physica A: Statistical Mech. Appl. 573, 125965 (2021)

    Article  Google Scholar 

  45. Y.Y. Atas, E. Bogomolny, O. Giraud, G. Roux, Phys. Rev. Lett. 110, 084101 (2013)

    Article  ADS  Google Scholar 

  46. S.H. Tekur, U.T. Bhosale, M.S. Santhanam, Phys. Rev. B 98, 104305 (2018)

    Article  ADS  Google Scholar 

  47. W.-J. Rao, Phys. Rev. B 102, 054202 (2020)

    Article  ADS  Google Scholar 

  48. J.M.G. Gomez, R.A. Molina, A. Relano, J. Retamosa, Phys. Rev. E 66, 036209 (2002)

    Article  ADS  Google Scholar 

  49. F. Alet, N. Laflorencie, C. R. Physique 19, 498–525 (2018)

    Article  ADS  Google Scholar 

  50. P. Shukla, Phys. Rev. E 62, 2098 (2000)

    Article  ADS  Google Scholar 

  51. P. Shukla, Phys. Rev. E 75, 051113 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  52. D.N. Page, Phys. Rev. Lett. 71, 1291 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  53. L. Rademaker, M. Ortuño, Phys. Rev. Lett. 116, 010404 (2016)

    Article  ADS  Google Scholar 

  54. C. Monthus, Journal of Physics A: Mathematical and Theoretical 49, 305002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  55. S.J. Thomson, M. Schiró, Phys. Rev. B 97, 060201(R) (2018)

    Article  ADS  Google Scholar 

  56. D. Pekker, B.K. Clark, V. Oganesyan, G. Refael, Phys. Rev. Lett. 119, 075701 (2017)

    Article  ADS  Google Scholar 

  57. B. Bauer, C. Nayak, J. Stat. Mech. p. 09005 (2013)

  58. D.E. Logan, S. Welsh, Phys. Rev. B 99, 045131 (2019)

    Article  ADS  Google Scholar 

  59. T. Papenbrock, Z. Pluhař, J. Tithof, H.A. Weidenmüller, Phys. Rev. E 83, 031130 (2011)

    Article  ADS  Google Scholar 

  60. S. Pai, N.S. Srivatsa, A.E.B. Nielsen, Phys. Rev. B 102, 035117 (2020)

    Article  ADS  Google Scholar 

  61. M. Haque, P. A. McClarty, I. M. Khaymovich, arXiv:2008.12782

  62. G. De Tomasi, I.M. Khaymovich, F. Pollmann, S. Warzel, Phys. Rev. B 104, 024202 (2021)

    Article  ADS  Google Scholar 

  63. E. Bogomolny, M. Sieber, Phys. Rev. E 98, 042116 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  64. P. Nosov, I.M. Khaymovich, V.E. Kravtsov, Phys. Rev. B 99, 104203 (2019)

    Article  ADS  Google Scholar 

  65. G. De Tomasi, I.M. Khaymovich, Phys. Rev. Lett. 124, 200602 (2020)

    Article  MathSciNet  Google Scholar 

  66. S.-X. Zhang, H. Yao, Phys. Rev. Lett. 121, 206601 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges M. Haque and I. Khaymovich for stimulating and helpful discussions. This work is supported by the National Natural Science Foundation of China through Grant No. 11904069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jia Rao.

Appendix A: Fitting spin models without \(S_{T}^{z}\) conservation

Appendix A: Fitting spin models without \(S_{T}^{z}\) conservation

In this section we use PRBM to fit the eigenvalue statistics of random spin models without \(S_{T}^{z}\) conservation; the Hamiltonian is as follows

Fig. 5
figure 5

The distributions of \(P(r^{(n)})\) in the orthogonal spin model without \(S_T^z\) conservation with comparisons to PRBM, the title of each sub-figure indicates the randomness strength h and fitted \(\mu \). Bottom right: \(\Sigma ^2(l)\) of the physical model and PRBM with \(\mu \) fitted through \(P(r^{(n)})\), they fit quite well except for the transition region \(h\sim 3\). Grey dashed line: \(\Sigma ^2(l)\) of PRBM at \(\mu =1.26 \). Dots and lines stand for physical data and PRBM in all cases

Fig. 6
figure 6

The distributions of \(P(r^{(n)})\) in the unitary spin model without \(S_T^z\) conservation at various disorder strengths with comparisons to PRBM with \(\beta =2\) and fitted \(\mu \). Bottom right: \(\Sigma ^2(l)\) of physical model and PRBM. Note here the values of \(\mu \) are fitted by \(\Sigma ^2(l)\) as listed in the figure legend; they have minor deviations from those fitted through \(P(r^{(n)})\), but the relative errors are controlled within 5%. Dots and lines stand for physical data and PRBM in all cases

$$\begin{aligned} H=\sum _{i=1}^{L}{\mathbf {S}}_{i}\cdot {\mathbf {S}}_{i+1}+\sum _{i=1}^{L}\sum _{ \alpha =x,y,z}h^{\alpha }\varepsilon _{i}^{\alpha }S_{i}^{\alpha }\text {.} \end{aligned}$$
(A1)

We will also consider the cases both with and without time-reversal symmetry. For the former, it is the case with \(h^{x}=h^{z}=h\ne 0\) and \( h^{y}=0\), while for the latter, it is \(h^{x}=h^{y}=h^{z}=h\ne 0\). For both models we simulate an \(L=13\) system, with Hilbert space dimension \( 2^{13}=8192\). In all cases, the number of eigenvalue spectrum samples is 400, and we take 400 eigenvalues in the middle to determine \(P\left( r^{\left( n\right) }\right) \).

For the orthogonal case, we likewise take several representative randomness strengths to determine spacing ratio distributions \(P\left( r^{\left( n\right) }\right) \) and number variance \(\Sigma ^{2}\left( l\right) \), and compare them to those of orthogonal PRBM with \(\beta =1\), and the results are collected in Fig. 5. This model suffers less from finite-size effect; hence, the fittings are close to perfect. Moreover, the optimal parameter \(\mu \) fitted by \(P\left( r^{\left( n\right) }\right) \) and \(\Sigma ^{2}\left( l\right) \) is very close in most of the phase diagram, except for the transition region \(h\sim 3\), as can be viewed from the last sub-figure of Fig. 5.

For the time-reversal breaking case with \(h^{x}=h^{y}=h^{z}=h\), the fitting results are displayed in Fig. 6. The finite size effects are slightly larger than the orthogonal case, just like in the models with \( S_T^z \) conservation as discussed in the main text. Nevertheless, the deviations between the values of \(\mu \) fitted by \(P\left( r^{\left( n\right) }\right) \) and \(\Sigma ^{2}\left( l\right) \) are still less than 5%.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, WJ. Power-law random banded matrix ensemble as the effective model for many-body localization transition. Eur. Phys. J. Plus 137, 398 (2022). https://doi.org/10.1140/epjp/s13360-022-02621-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02621-x

Navigation