Skip to main content
Log in

Aspects of infinite shear rate viscosity and heat transport of magnetized Carreau nanofluid

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Viscosity of fluid keeps its leading role in the polymer process, biological fluids, mayonnaise, colloidal suspensions, melt solutions and lubrication models. The Carreau nanofluid viscosity model can explain features of non-Newtonian fluids in the shear-thinning/thickening regions. This article describes the Lorentz force effects with the use of the infinite shear rate of the Carreau viscosity model and thermal radiation along with the influence of non-uniform heat source/sink transportation phenomenon of heat over the surface. The transformations of dimensionless variables are implemented to convert the partial differential equations into nonlinear coupled ordinary differential equations (ODEs). The solution of these ODEs is performed using the Runge–Kutta Fehlberg method along with the shooting scheme. The effects of the We, Pr, M, Nr, β*, β, B*and A*parameters denote the Weissenberg number, Prandtl number, radiation parameter, temperature ratio parameter, viscosity ratio parameter, stretching parameter, coefficients of space and temperature-dependent heat source/sink. For the correctness and exactness of the scheme, a comparison study is also provided based on the present results and the published results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(n\) :

Carreau fluid index

\(\tau\) :

Cauchy stress tensor

A*:

Coefficients of space

C :

Concentration of fluid

\(\rho\) :

Fluid density

L :

Gradient of velocity

\(q\) :

Heat flux

\(\lambda\) :

Heat sink source parameter

\(h_{f}\) :

Heat transfer coefficient

\(T_{\infty }\) :

Infinite temperature

\(\upsilon\) :

Kinematic viscosity

\({\text{Re}}_{x}\) :

Local Reynold number

\({\text{We}}\) :

Local Weissenberg number

\(k^{*}\) :

Mean absorption coefficient

M :

Ma questions no chick genetic number

\({\text Nu}_{x}\) :

Nusselt number

\(p\) :

Pressure

\(\Pr\) :

Prandtl number

\(q_{r}\) :

Radiative heat flux

\(A_{1}\) :

Rivlin–Ericksen tensor

\({\text{Rd}}\) :

Radiation parameter

\(\sigma^{*}\) :

Stefan–Boltzmann constant

\(x,y\) :

Space coordinates

\(c_{f}\) :

Skin friction coefficient

\(c_{p}\) :

Specific heat

\(U_{w} \left( {x,t} \right)\) :

Stretching velocity

\(\Omega\) :

Shear rate of strain tensor

\(\alpha\) :

Thermal diffusivity

T :

Temperature of the fluid

B*:

Temperature-dependent heat source/sink

\(\gamma\) :

Thermal Biot number

\(k\) :

Thermal conductivity

\(\theta_{w}\) :

Temperature ratio parameter

\(A\) :

Unsteadiness parameter

\(\beta^{*}\) :

Viscosity ratio

\(u,v\) :

Velocity component

References

  1. H. Dakhil, D. Auhl, A. Wierschem, Infinite-shear viscosity plateau of salt-free aqueous xanthan solutions. J. Rheol. 63(1), 63–69 (2019)

    ADS  Google Scholar 

  2. M. Khan, Hashim, Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet. AIP Adv. 5(10), 107203 (2015)

  3. M. Khan, H. Sardar, On steady two-dimensional Carreau fluid flow over a wedge in the presence of infinite shear rate viscosity. Res. Phys. 8, 516–523 (2018)

    Google Scholar 

  4. S. Hina, A. Shafique, M. Mustafa, Numerical simulations of heat transfer around a circular cylinder immersed in a shear-thinning fluid obeying Cross model. Phys. A Stat. Mech. Appl. 540, 123184 (2020)

    MathSciNet  MATH  Google Scholar 

  5. M. Hassan, A. Issakhov, S.U.D. Khan, M.E.H. Assad, E.H.B. Hani, M. Rahimi-Gorji, S.U.D. Khan, The effects of zero and high shear rates viscosities on the transportation of heat and mass in boundary layer regions: a non-Newtonian fluid with Carreau model. J. Mol. Liq. 317, 113991 (2020)

    Google Scholar 

  6. P.J. Carreau, Rheological equations from molecular network theories. Trans. Soc. Rheol. 16(1), 99–127 (1972)

    Google Scholar 

  7. Y.H. Hyun, S.T. Lim, H.J. Choi, M.S. Jhon, Rheology of poly (ethylene oxide)/organoclay nanocomposites. Macromolecules 34(23), 8084–8093 (2001)

    ADS  Google Scholar 

  8. D. Corradini, Buffer additives other than the surfactant sodium dodecyl sulfate for protein separations by capillary electrophoresis. J. Chromatogr. B Biomed. Sci. Appl. 699(1–2), 221–256 (1997)

    Google Scholar 

  9. C. Heller, Principles of DNA separation with capillary electrophoresis. Electrophoresis 22(4), 629–643 (2001)

    Google Scholar 

  10. I.L. Animasaun, I. Pop, Numerical exploration of a non-Newtonian Carreau fluid flow driven by catalytic surface reactions on an upper horizontal surface of a paraboloid of revolution, buoyancy and stretching at the free stream. Alex. Eng. J. 56(4), 647–658 (2017)

    Google Scholar 

  11. O.K. Koriko, K.S. Adegbie, N.A. Shah, I.L. Animasaun, M.A. Olotu, Numerical solutions of the partial differential equations for investigating the significance of partial slip due to lateral velocity and viscous dissipation: the case of blood‐gold Carreau nanofluid and dusty fluid. Numer. Methods Part. Differ. Equ. (2021). https://doi.org/10.1002/num.22754

  12. O.K. Koriko, I.L. Animasaun, B. Mahanthesh, S. Saleem, G. Sarojamma, R. Sivaraj, Heat transfer in the flow of blood-gold Carreau nanofluid induced by partial slip and buoyancy. Heat Transf. Asian Res. 47(6), 806–823 (2018)

    Google Scholar 

  13. T. Hayat, M.I. Khan, M. Farooq, A. Alsaedi, M. Waqas, T. Yasmeen, Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat Mass Transf. 99, 702–710 (2016)

    Google Scholar 

  14. M.I. Khan, F. Alzahrani, A. Hobiny, Simulation and modeling of second order velocity slip flow of micropolar ferrofluid with Darcy-Forchheimer porous medium. J. Mater. Res. Technol. 9(4), 7335–7340 (2020)

    Google Scholar 

  15. M.I. Khan, F. Alzahrani, A. Hobiny, Heat transport and nonlinear mixed convective nanomaterial slip flow of Walter-B fluid containing gyrotactic microorganisms. Alex. Eng. J. 59(3), 1761–1769 (2020)

    Google Scholar 

  16. M.I. Khan, F. Alzahrani, A. Hobiny, Z. Ali, Modeling of Cattaneo-Christov double diffusions (CCDD) in Williamson nanomaterial slip flow subject to porous medium. J. Mater. Res. Technol. 9(3), 6172–6177 (2020)

    Google Scholar 

  17. M.I. Khan, S. Qayyum, S. Kadry, W.A. Khan, S.Z. Abbas, Irreversibility analysis and heat transport in squeezing nanoliquid flow of non-Newtonian (second-grade) fluid between infinite plates with activation energy. Arab. J. Sci. Eng. 45(6), 4939–4947 (2020)

    Google Scholar 

  18. M.K. Nayak, S. Shaw, M.I. Khan, V.S. Pandey, M. Nazeer, Flow and thermal analysis on Darcy-Forchheimer flow of copper-water nanofluid due to a rotating disk: a static and dynamic approach. J. Mater. Res. Technol. 9(4), 7387–7408 (2020)

    Google Scholar 

  19. M.K. Nayak, A.A. Hakeem, B. Ganga, M.I. Khan, M. Waqas, O.D. Makinde, Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: a combined approach to good absorber of solar energy and intensification of heat transport. Comput. Methods Programs Biomed. 186, 105131 (2020)

    Google Scholar 

  20. S.Z. Abbas, W.A. Khan, S. Kadry, M.I. Khan, M. Waqas, M.I. Khan, Entropy optimized Darcy-Forchheimer nanofluid (silicon dioxide, molybdenum disulfide) subject to temperature dependent viscosity. Comput. Methods Programs Biomed. 190, 105363 (2020)

    Google Scholar 

  21. S.Z. Abbas, M.I. Khan, S. Kadry, W.A. Khan, M. Israr-Ur-Rehman, M. Waqas, Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy. Comput. Methods Programs Biomed. 190, 105362 (2020)

    Google Scholar 

  22. J. Wang, R. Muhammad, M.I. Khan, W.A. Khan, S.Z. Abbas, Entropy optimized MHD nanomaterial flow subject to variable thicked surface. Comput. Methods Programs Biomed. 189, 105311 (2020)

    Google Scholar 

  23. J. Wang, M.I. Khan, W.A. Khan, S.Z. Abbas, M.I. Khan, Transportation of heat generation/absorption and radiative heat flux in homogeneous–heterogeneous catalytic reactions of non-Newtonian fluid (Oldroyd-B model). Comput. Methods Programs Biomed. 189, 105310 (2020)

    Google Scholar 

  24. R. Muhammad, M.I. Khan, N.B. Khan, M. Jameel, Magnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation. Comput. Methods Programs Biomed. 189, 105294 (2020)

    Google Scholar 

  25. R. Muhammad, M.I. Khan, M. Jameel, N.B. Khan, Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation. Comput. Methods Programs Biomed. 188, 105298 (2020)

    Google Scholar 

  26. M. Ijaz Khan, F. Alzahrani, Activation energy and binary chemical reaction effect in nonlinear thermal radiative stagnation point flow of Walter-B nanofluid: numerical computations. Int. J. Mod. Phys. B 34(13), 2050132 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  27. A. Ayub, Z. Sabir, G.C. Altamirano et al., Characteristics of melting heat transport of blood with time-dependent cross-nanofluid model using Keller-Box and BVP4C method. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01406-7

    Article  Google Scholar 

  28. S.M. Arifuzzaman, M.S. Khan, A. Al-Mamun, S. Reza-E-Rabbi, P. Biswas, I. Karim, Hydrodynamic stability and heat and mass transfer flow analysis of MHD radiative fourth-grade fluid through porous plate with chemical reaction. J. King Saud Univ. Sci. 31(4), 1388–1398 (2019)

    Google Scholar 

  29. S. Reza-E-Rabbi, S.F. Ahmmed, S.M. Arifuzzaman, T. Sarkar, M.S. Khan, Computational modelling of multiphase fluid flow behaviour over a stretching sheet in the presence of nanoparticles. Eng. Sci. Technol. Int. J. 23(3), 605–617 (2020)

    Google Scholar 

  30. S. Reza-E-Rabbi, S.M. Arifuzzaman, T. Sarkar, M.S. Khan, S.F. Ahmmed, Explicit finite difference analysis of an unsteady MHD flow of a chemically reacting Casson fluid past a stretching sheet with Brownian motion and thermophoresis effects. J. King Saud Univ. Sci. 32(1), 690–701 (2020)

    Google Scholar 

  31. B.M.J. Rana, S.M. Arifuzzaman, S. Reza-E-Rabbi, S.F. Ahmed, M.S. Khan, Energy and magnetic flow analysis of Williamson micropolar nanofluid through stretching sheet. Int. J. Heat Technol. 37(2), 487–496 (2019)

    Google Scholar 

  32. R.P. Chhabra, P.H.T. Uhlherr, Creeping motion of spheres through shear-thinning elastic fluids described by the Carreau viscosity equation. Rheol. Acta 19(2), 187–195 (1980)

    Google Scholar 

  33. M.B. Bush, N. Phan-Thien, Drag force on a sphere in creeping motion throug a carreau model fluid. J. Non-newton. Fluid Mech. 16(3), 303–313 (1984)

    MATH  Google Scholar 

  34. J.P. Hsu, S.J. Yeh, Drag on two coaxial rigid spheres moving along the axis of a cylinder filled with Carreau fluid. Powder Technol. 182(1), 56–71 (2008)

    Google Scholar 

  35. J. Uddin, J.O. Marston, S.T. Thoroddsen, Squeeze flow of a Carreau fluid during sphere impact. Phys Fluids 24(7), 073104 (2012)

    ADS  MATH  Google Scholar 

  36. D. Baleanu, R. Sadat, M.R. Ali, The method of lines for solution of the carbon nanotubes engine oil nanofluid over an unsteady rotating disk. Eur. Phys. J. Plus 135, 788 (2020). https://doi.org/10.1140/epjp/s13360-020-00763-4

    Article  Google Scholar 

  37. M.S. Tshehla, The flow of a Carreau fluid down an incline with a free surface. Int. J. Phys. Sci. 6(16), 3896–3910 (2011)

    Google Scholar 

  38. I.B. Olajuwon, Convection heat and mass transfer in a hydromagnetic Carreau fluid past a vertical porous plate in presence of thermal radiation and thermal diffusion. Therm. Sci. 15(suppl. 2), 241–252 (2011)

    MathSciNet  Google Scholar 

  39. P.T. Griffiths, Flow of a generalised Newtonian fluid due to a rotating disk. J. Non-newton. Fluid Mech. 221, 9–17 (2015)

    MathSciNet  Google Scholar 

  40. B.C. Sakiadis, Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J. 7(1), 26–28t (1961)

    Google Scholar 

  41. L.J. Crane, Flow past a stretching plate. Z. Angew. Math. Phys. ZAMP 21(4), 645–647 (1970)

    Google Scholar 

  42. P.S. Gupta, A.S. Gupta, Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 55(6), 744–746 (1977)

    Google Scholar 

  43. J.L. Aljohani, E.S. Alaidarous, M.A.Z. Raja, M. Shoaib, M.S. Alhothuali, Intelligent computing through neural networks for numerical treatment of non-Newtonian wire coating analysis model. Scientific Reports 11(1), 1–32 (2021)

    Google Scholar 

  44. Z. Sabir, R. Akhtar, Z. Zhiyu, M. Umar, A. Imran, H.A. Wahab, M. Shoaib, M.H.Z. Raja, A computational analysis of two-phase casson nanofluid passing a stretching sheet using chemical reactions and gyrotactic microorganisms. Math. Probl. Eng. 2019 (2019)

  45. Z. Sabir, A. Imran, M. Umar, M. Zeb, M. Shoaib, M.A.Z. Raja, A numerical approach for two-dimensional Sutterby fluid flow bounded at a stagnation point with an inclined magnetic field and thermal radiation impacts. Therm. Sci. 00, 186–186 (2020)

    Google Scholar 

  46. M. Umar, Z. Sabir, A. Imran, A.H. Wahab, M. Shoaib, M.A.Z. Raja, The 3-D flow of Casson nanofluid over a stretched sheet with chemical reactions, velocity slip, thermal radiation and Brownian motion. Therm. Sci. 24(5 Part A), 2929–2939 (2020)

    Google Scholar 

  47. T. Sajid, S. Tanveer, Z. Sabir, J.L.G. Guirao, Impact of activation energy and temperature-dependent heat source/sink on maxwell–sutterby fluid. Math. Probl. Eng. 2020 (2020)

  48. Z. Sabir, A. Ayub, J.L. Guirao, S. Bhatti, S.Z.H. Shah, The effects of activation energy and thermophoretic diffusion of nanoparticles on steady micropolar fluid along with Brownian motion. Adv. Mater. Sci. Eng. 2020 (2020)

  49. Shah, S. Z., Wahab, H. A., Ayub, A., Sabir, Z., haider, A., & Shah, S. L. Higher order chemical process with heat transport of magnetized cross nanofluid over wedge geometry. Heat Transfer, 50(4), 3196–3219 (2021)

  50. A. Ayub, H.A. Wahab, Z. Sabir, A. Arbi, A note on heat transport with aspect of magnetic dipole and higher order chemical process for steady micropolar fluid, in Fluid-Structure Interaction. (IntechOpen, London, 2020)

    Google Scholar 

  51. H.A. Wahab, S.Z. Hussain Shah, A. Ayub, Z. Sabir, M. Bilal, G.C. Altamirano, Multiple characteristics of three-dimensional radiative Cross fluid with velocity slip and inclined magnetic field over a stretching sheet. Heat Transfer 50(4), 3325–3341 (2021)

    Google Scholar 

  52. R. Sadat, P. Agarwal, R. Saleh et al., Lie symmetry analysis and invariant solutions of 3D Euler equations for axisymmetric, incompressible, and inviscid flow in the cylindrical coordinates. Adv. Differ. Equ. 2021, 486 (2021). https://doi.org/10.1186/s13662-021-03637-w

    Article  MathSciNet  Google Scholar 

  53. R. Cortell, Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Phys. Lett. A 372(5), 631–636 (2008)

    ADS  MATH  Google Scholar 

  54. S. Nadeem, R.U. Haq, N.S. Akbar, Z.H. Khan, MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alex. Eng. J. 52(4), 577–582 (2013)

    Google Scholar 

  55. M.A.A. Hamad, M. Ferdows, Similarity solutions to viscous flow and heat transfer of nanofluid over nonlinearly stretching sheet. Appl. Math. Mech. 33(7), 923–930 (2012)

    MathSciNet  MATH  Google Scholar 

  56. M. Khan, M. Yasir, A.S. Alshomrani, S. Sivasankaran, Y.R. Aladwani, A. Ahmed, Variable heat source in stagnation-point unsteady flow of magnetized Oldroyd-B fluid with cubic autocatalysis chemical reaction. Ain Shams Engineering Journal 13(3), 101610 (2022)

  57. H. Gul, M. Ramzan, J.D. Chung, Y.M. Chu, S. Kadry, Multiple slips impact in the MHD hybrid nanofluid flow with Cattaneo-Christov heat flux and autocatalytic chemical reaction. Sci. Rep. 11(1), 1–14 (2021)

    Google Scholar 

  58. A. Shafiq, A.B. Çolak, T.N. Sindhu, Q.M. Al-Mdallal, T. Abdeljawad, Estimation of unsteady hydromagnetic Williamson fluid flow in a radiative surface through numerical and artificial neural network modeling. Sci. Rep. 11(1), 1–21 (2021)

    ADS  Google Scholar 

  59. F. Pichi, F. Ballarin, G. Rozza, J.S. Hesthaven, An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. (2021). arXiv preprint arXiv:2109.10765

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sadat.

Ethics declarations

Conflict of interest

There is no conflict of interest. All authors contributed equally.

Data availability

No data is used to support this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayub, A., Sabir, Z., Shah, S.Z.H. et al. Aspects of infinite shear rate viscosity and heat transport of magnetized Carreau nanofluid. Eur. Phys. J. Plus 137, 247 (2022). https://doi.org/10.1140/epjp/s13360-022-02410-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02410-6

Navigation