Skip to main content
Log in

Study of charm \({{\varvec{\Lambda}}}_{{\varvec{c}}}^{+}\) baryon production in pp and p–Pb collisions at \(\sqrt{{{\varvec{s}}}_{\mathbf{NN}}}=5.02\mathbf{TeV}\)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we have studied differential production cross section of charmed \({\Lambda }_{\mathrm{c}}^{+}\) baryon as a function of \(p_{T}\) in \({\text{pp}}\) and p–Pb collisions at \(\sqrt {s_{{{\text{NN}}}} } = 5.02 {\text{TeV}}\) in the transverse momentum range of \(1 < p_{T} < 12\;{\text{GeV/c}}\) and \(1<{p}_{T}<24\mathrm{GeV}/c\), respectively. For this study, we compared PYTHIA 8 Monte Carlo simulations with the experimental results obtained by the ALICE Acharya et al. (Phys. Rev. C 104: 054905, 2021) and LHCb Aaij et al. (J. High Energ. Phys. 02: 102, 2019) collaborations. The transverse momentum spectra are plotted in the rapidity interval of \(\left|y\right|<0.5\) for pp collisions, while in \(-0.96<y<0.04 \left(\mathrm{mid}\right)\), \(1.5<y<4\) and \(2.5<y<4\) (forward) and \(-4<y<-2.5\) (backward) rapidity intervals for p–Pb collisions by using PYTHIA 8 Monash tune and CR tunes (modes 0, 2 and 3). Baryon-to-meson ratios \({\Lambda }_{c}^{+}/{D}^{0}\) as a function of \({p}_{T}\) and rapidity are shown. The nuclear modification factor \({R}_{p\mathrm{Pb}}\) for \({\Lambda }_{c}^{+}\) at mid-rapidity calculated from the cross sections in \(pp\) and p–Pb collisions is also presented. Both the magnitude and trend of distributions of \({\Lambda }_{c}^{+}\) and \({\Lambda }_{c}^{+}/{D}^{0}\) ratios verses \({p}_{T}\) as experimentally observed are well explained by PYTHIA 8 tunes that implement color reconnection beyond leading-color approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors’ comment: The ALICE experimental data is taken from https://www.hepdata.net/ from the paper https://doi.org/10.17182/hepdata.114213.]

References

  1. R.S. Bhalerao, R.V. Gavai, Physics at the Large Hadron Collider, pp. 105–130 (2009)

  2. P. Braun-Munzinger et al., Phys. Rep. 621, 76–126 (2016) arXiv:1510.00442

    Article  ADS  MathSciNet  Google Scholar 

  3. Y. Akiba et al., (2015), arXiv:1502.02730

  4. J. Adams et al. (STAR Collaboration), Nucl. Phys. A757(1–2), 102–183 (2005)

  5. K. Adcox et al. (PHENIX Collaboration), Nucl. Phys. A757(1), 184–283 (2005)

  6. M. Gyulassy et al., Nucl. Phys. A 750(1), 30–63 (2005)

    Article  ADS  Google Scholar 

  7. J. Schukraft et al., Nucl. Phys A 967, 1–10 (2017)

    Article  ADS  Google Scholar 

  8. S. Chatrchyan et al. (CMS Collaboration) Phys. Rev. C 84, 024906 (2011), arXiv:1102.1957

  9. M. AC. Lamont (STAR collaboration), J. Phys. G: Nucl. Part. Phys. 32(12), S105 (2006)

  10. B. B. Abelev et al. (ALICE collaboration), Phys. Rev. Lett. 111, 222301 (2013), arXiv:1307.5530

  11. V.K. Tiwari, C.P. Singh, Phys. Lett. B 411(1–2), 225–229 (1997)

    Article  ADS  Google Scholar 

  12. B. Abelev et al. (ALICE Collaboration), Phys. Rev. Lett. 109(7), 072301 (2012)

  13. J. Zhao et al., Prog. Part. Nucl. Phys. 114, 103801 (2020)

    Article  Google Scholar 

  14. L. Adamczyk et al. (STAR collaboration), Phys. Rev. Lett.113, 142301 (2014), arXiv:1404.6185

  15. B.B. Abelev et al. (ALICE collaboration), Phys. Rev. C 90, 034904 (2014), arXiv:1405.2001

  16. J.Adam et al. (ALICE collaboration), J. High Energ. Phys. 81(3), 1–43 (2016)

  17. P. Braun-Munzinger, J. Stachel, Nature 448(7151), 302–309 (2007)

    Article  ADS  Google Scholar 

  18. J.L. Nagle, W.A. Zajc, Ann. Rev. Nucl. Part. Sci. 68, 211–235 (2018) arXiv:1801.03477

    Article  ADS  Google Scholar 

  19. S. Acharya et al. (ALICE Collaboration), Phys. Rev. C 99(2), 024906 (2019)

  20. S. Acharya et al. (ALICE Collaboration), Eur. Phys. J. C80(8), 693, (2020) arXiv:2003.02394

  21. J. Adam et al. (ALICE Collaboration), Phys. Lett. B760, 720–735, (2016) arXiv:1601.03658

  22. S. Acharya et al. (ALICE Collaboration), Eur. Phys. J. C 80, 167, (2020), arXiv:1908.01861

  23. J. Adam et al. (ALICE Collaboration), Nat. Phys.13, 535–539 (2017)

  24. W. Li et al. (CMS Collaboration), J. Phys. G: Nucl. Part. Phys. 38(12), 124027 (2011)

  25. V. Khachatryan et al. (CMS collaboration), J. High Energ. Phys. 9, 1–38 (2010), arXiv:1009.4122.

  26. K. Dusling et al., Nucl. Phys. A 836(1–2), 159–182 (2010) arXiv:0911.2720

    Article  ADS  Google Scholar 

  27. B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 719, (2013) 29-41 arXiv:1212.2001

  28. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 718, 795, (2013) arXiv:1210.5482

  29. J. Nash et al. (CMS Collaboration), Phys. Lett. B 765, 193 (2017) arXiv:1606.06198

  30. Y. Oh et al., Phys. Rev. C 79, 044905 (2009), arXiv:0901.1382.

  31. G. M. Innocenti. (ALICE Collaboration), Nucl. Phys. A 1005, 122002 (2021)

  32. G. Xie et al. (STAR Collaboration), Nucl. Phys. A, 967, 928–931 (2017)

  33. V. Greco et al., Phys. Lett. B 595(1–4), 202–208 (2004)

    Article  ADS  Google Scholar 

  34. R. Aaij et al., Nucl. Phys. B 871(1), 1–20 (2013)

    Article  ADS  Google Scholar 

  35. H.H. Li et al., Phys. Rev. C 97(6), 064915 (2018)

    Article  ADS  Google Scholar 

  36. R.C. Hwa, C.B. Yang, Phys. Rev. C 66(6), 064903 (2002)

    Article  ADS  Google Scholar 

  37. R.J. Fries et al., Phys. Rev. Lett. 90, 202303 (2003) arXiv:0709.3637

    Article  ADS  Google Scholar 

  38. D. Molnar et al., Phys. Rev. Lett. 91, 092301 (2003)

    Article  ADS  Google Scholar 

  39. S.H. Lee et al., Phys. Rev. Lett. 100, 222301 (2008)

    Article  ADS  Google Scholar 

  40. J. Adam et al. (ALICE collaboration), Phys. Lett. B 760, 720–735 (2016), arXiv:1601.03658

  41. M. He, R. Rapp, Phys. Lett. B 795, 117–121 (2019) arXiv:1902.08889

    Article  ADS  Google Scholar 

  42. J. Adam et al. (STAR collaboration), Phys. Rev. Lett. 124(17), 172301 (2020)

  43. S.Acharya et al. (ALICE collaboration), Phys. Lett. B 793, 212–223

  44. A. M. Sirunyan et al. (CMS Collaboration), Phys. Lett. B 803, 135328 (2020), arXiv:1906.03322

  45. H. Fujii et al., Nucl. Phys. A 780, 146 (2006) arXiv:hep-ph/0603099

    Article  ADS  Google Scholar 

  46. K.J. Eskola et al., Eur. Phys. J. C 77(3), 163 (2017) arXiv:hep-ph/1612.05741

    Article  ADS  Google Scholar 

  47. S. Gavin, J. Milana, Phys. Rev. Lett. 68, 1834 (1992)

    Article  ADS  Google Scholar 

  48. F. Arleo, V.-N. Tram, Eur. Phys. J. C 55, 449 (2008) arXiv:hep-ph/0612043

    Article  ADS  Google Scholar 

  49. S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett. 91, 072303 (2003)

  50. K. Tywoniuk, Nucl. Phys. A 926, 85–91 (2014)

    Article  ADS  Google Scholar 

  51. S. Acharya et al. (ALICE Collaboration), Phys. Rev. C 104(5), 054905 (2021)

  52. B. Chang et al. (ALICE Collaboration), J. High Energ. Phys. (4), 108 (2018)

  53. H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 207, 109–114 (1988)

  54. H. Abramowicz et al. (ZEUS Collaboration), JHEP 09, 058, (2013) arXiv:1306.4862

  55. P. Skands et al., Eur. Phys. J. C 74(8), 1–39 (2014)

    Article  Google Scholar 

  56. J.R. Christiansen, P.Z. Skands, J. High Energ. Phys. 08, 1–52 (2015)

    Google Scholar 

  57. R. Aaij et al. (LHCb Collaboration), J. High Energ. Phys. 02, 102 (2019)

  58. T. Sjöstrand et al., Comp. Phys. Comm. 191, 159–177 (2015)

    Article  ADS  Google Scholar 

  59. B. Andersson et al., Phys. Rep. 97(2–3), 31–145 (1983)

    Article  ADS  Google Scholar 

  60. T. Sjöstrand et al., J. High Energ. Phys. 05, 026 (2006)

    Article  ADS  Google Scholar 

  61. T. Sjöstrand et al., Phys. Rev. D 36(7), 2019 (1987)

  62. G. Gustafson et al., Phys. Lett. B 209(1), 90–94 (1988)

    Article  ADS  Google Scholar 

  63. T. Sjöstrand, P.Z. Skands, J. High Energ. Phys. 03, 053 (2004)

    Article  ADS  Google Scholar 

  64. G. Gustafson et al., Acta Phys. Polon. B 40, 1981–1996 (2009), arXiv:0905.2492

  65. A. Kisiel et al., Phys. Rev. C 84(4), 044913 (2011)

    Article  ADS  Google Scholar 

  66. E. Cuautle et al., J. Phys.: Conf. Series 730(1), 012009 (2016)

    Google Scholar 

  67. A.P. Note. (ATLAS collaboration), CERN Document Server ATL-PHYS-PUB-2017–008 (2017).

  68. A. Ortiz Velasquez et al., Phys. Rev. Lett. 111(4), 042001 (2013)

    Article  ADS  Google Scholar 

  69. C. Bierlich et al., J. High Energ. Phys. 10, 1–55 (2018). arXiv:1806.10820

  70. B. Andersson & G. Gustafson, Nucl. Phys. B 281, 289 (1987)

Download references

Acknowledgements

We would like to acknowledge COMSATS University Islamabad, Islamabad Campus, Pakistan, for providing all possible facilities and a suitable platform to perform the simulations and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zeenat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Y., Zeenat, H., Arif, A. et al. Study of charm \({{\varvec{\Lambda}}}_{{\varvec{c}}}^{+}\) baryon production in pp and p–Pb collisions at \(\sqrt{{{\varvec{s}}}_{\mathbf{NN}}}=5.02\mathbf{TeV}\). Eur. Phys. J. Plus 137, 209 (2022). https://doi.org/10.1140/epjp/s13360-022-02375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02375-6

Navigation