Skip to main content

Advertisement

Log in

Theoretical insights of structural evolution and electronic properties of Ru2Gen (n = 1–16) clusters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present a study on dual ruthenium atom-doped germanium clusters, Ru2Gen (n = 1–16), using comprehensive genetic algorithm combined with density functional theory (DFT) calculation. The low-lying structures of Ru2Gen are re-optimized by DFT calculation implemented in Gaussian09 program. For small Ru2Gen with n ≤ 8, the ground state structures adopt exohedral structure with Ru dimer as core surrounding by Ge atoms, and Ge atoms tend to separate rather than aggregate to form polyhedral configurations. From cluster sizes n ≥ 9, half-encapsulated structures start to form, while the geometries of clusters with 12 ≤ n ≤ 15 are based on the regular pentagonal prism attached with extra Ge atoms. For Ru2Ge16, the geometry looks like a Ru dimer invaginated cage structure. Furthermore, we analyze their bonding characters, natural electron configurations, density of states and frontier molecular orbital. We predict that the clusters with number of Ge atom of n = 6, 8, 10, 13 have high structural and chemical stability. Interestingly, Ru2Ge3, Ru2Ge5, Ru2Ge7 and Ru2Ge9 clusters possess magnetic moment of 2 μB, which is different from the reported non-magnetism of monatomic doping. These results enrich the understanding of transition metal-doped Gen clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Pillarisetty, Nature 479(7373), 324 (2011)

    Article  ADS  Google Scholar 

  2. X. Li, Y. Ma, Y. Dai, B. Huang, J Mater Chem C 1(30), 4565 (2013)

    Article  Google Scholar 

  3. V. Kumar, Y. Kawazoe, Phys. Rev. Lett. 88(23), 235504 (2002)

    Article  ADS  Google Scholar 

  4. V. Kumar, Y. Kawazoe, Appl. Phys. Lett. 80(5), 859 (2002)

    Article  ADS  Google Scholar 

  5. X.J. Hou, G. Gopakumar, P. Lievens, M.T. Nguyen, J. Phys. Chem. A 111(51), 13544 (2007)

    Article  Google Scholar 

  6. J. Wang, J.G. Han, J. Phys. Chem. A 110(46), 12670 (2006)

    Article  ADS  Google Scholar 

  7. T.T. Ba, M.T. Nguyen, J. Phys. Chem. A 115(35), 9993 (2011)

    Article  Google Scholar 

  8. J. Wang, J.-G. Han, J. Chem. Phys. 123(24), 244303 (2005)

    Article  ADS  Google Scholar 

  9. Q. Jing, F. Tian, Y. Wang, J. Chem. Phys. 128(12), 124319 (2008)

    Article  ADS  Google Scholar 

  10. J.M. Goicoechea, S.C. Sevov, J. Am. Chem. Soc. 128(12), 4155 (2006)

    Article  Google Scholar 

  11. L.N. Pham, M.T. Nguyen, J. Phys. Chem. A 121(9), 1940 (2017)

    Article  Google Scholar 

  12. J. Wang, J.-G. Han, J. Phys. Chem. A 112(14), 3224 (2008)

    Article  Google Scholar 

  13. J. Atobe, K. Koyasu, S. Furuse, A. Nakajima, Phys. Chem. Chem. Phys. 14(26), 9403 (2012)

    Article  Google Scholar 

  14. R.K. Triedi, D. Bandyopadhyay, J. Mater. Sci. 54(1), 515 (2019)

    Article  ADS  Google Scholar 

  15. D. Bandyopadhyay, P. Kaur, P. Sen, J. Phys. Chem. A 114(50), 12986 (2010)

    Article  Google Scholar 

  16. C. Siouani, S. Mahtout, F. Rabilloud, J. Mol. Model. 25(5), 113 (2019)

    Article  Google Scholar 

  17. R. Trivedi, K. Dhaka, D. Bandyopadhyay, RSC Adv. 4(110), 64825 (2014)

    Article  ADS  Google Scholar 

  18. K. Dhaka, D. Bandyopadhyay, RSC Adv. 5(101), 83004 (2015)

    Article  ADS  Google Scholar 

  19. K. Dhaka, R. Trivedi, D. Bandyopadhyay, J. Mol. Model. 19(4), 1473 (2013)

    Article  Google Scholar 

  20. S. Abhishek Kumar, V. Kumar, Y. Kawazoe, J. Phys. Chem. B 109(32), 15187 (2005)

    Article  Google Scholar 

  21. E.M. Sosa-Hernández, P.G. Alvarado-Leyva, Phys. E Low Dimens. Syst. Nanostruct. 42(1), 17 (2009)

    Article  ADS  Google Scholar 

  22. W.-J. Zhao, Y.-X. Wang, J. Mol. Struct. Theochem 901(1), 18 (2009)

    Article  Google Scholar 

  23. X.-Q. Liang, X.-J. Deng, S.-J. Lu, X.-M. Huang, J.-J. Zhao, H.-G. Xu, W.-J. Zheng, X.C. Zeng, J. Phys. Chem. C 121(12), 7037 (2017)

    Article  Google Scholar 

  24. X. Liang, X. Kong, S.-J. Lu, Y. Huang, J. Zhao, H.-G. Xu, W. Zheng, X.C. Zeng, J. Phys. Condens. Matter 30(33), 335501 (2018)

    Article  Google Scholar 

  25. A.K. Singh, V. Kumar, Y. Kawazoe, Phys. Rev. B 71(7), 075312 (2005)

    Article  ADS  Google Scholar 

  26. D. Bandyopadhyay, Nanotechnology 20(27), 275202 (2009)

    Article  ADS  Google Scholar 

  27. D. Bandyopadhyay, P. Sen, J. Phys. Chem. A 114(4), 1835 (2010)

    Article  Google Scholar 

  28. D. Bandyopadhyay, J. Mol. Model. 18(8), 3887 (2012)

    Article  Google Scholar 

  29. R. Trivedi, D. Bandyopadhyay, J. Mater. Sci. 53(11), 8263 (2018)

    Article  ADS  Google Scholar 

  30. M. Kumar, N. Bhattacharyya, D. Bandyopadhyay, J. Mol. Model. 18(1), 405 (2012)

    Article  Google Scholar 

  31. D. Bandyopadhyay, J. Appl. Phys. 104(8), 084308 (2008)

    Article  ADS  Google Scholar 

  32. A. Mentefa, F.Z. Boufadi, M. Ameri, F. Gaid, L. Bellagoun, A.A. Odeh, Y. Al-Douri, J. Supercond. Nov. Magn. 34(1), 269 (2021)

    Article  Google Scholar 

  33. B.A. Simkin, Y. Hayashi, H. Inui, Intermetallics 13(11), 1225 (2005)

    Article  Google Scholar 

  34. Y. Sakai, M. Matoba, I. Yamada, K. Funakoshi, T. Kunimoto, Y. Higo, Y. Kamihara, EPL 107(5), 56003 (2014)

    Article  ADS  Google Scholar 

  35. G. Espinoza-Quintero, J.C.A. Duckworth, W.K. Myers, J.E. McGrady, J.M. Goicoechea, J. Am. Chem. Soc. 136(4), 1210 (2014)

    Article  Google Scholar 

  36. J.M. Goicoechea, J.E. McGrady, Dalton Trans. Int. J. Inorg. Chem. 44(15), 6755 (2015)

    Article  Google Scholar 

  37. Y. Jin, Y. Tian, X. Kuang, C. Lu, J.L. Cabellos, S. Mondal, G. Merino, J. Phys. Chem. C 120(15), 8399 (2016)

    Article  Google Scholar 

  38. Y. Jin, S. Lu, A. Hermann, X. Kuang, C. Zhang, C. Lu, H. Xu, W. Zheng, Sci. Rep. 6(1), 30116 (2016)

    Article  ADS  Google Scholar 

  39. G. Gopakumar, X. Wang, L. Lin, J.D. Haeck, P. Lievens, M.T. Nguyen, J. Phys. Chem. C 113(25), 10858 (2009)

    Article  Google Scholar 

  40. A. Kumar-Singh, V. Kumar, Y. Kawazoe, Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 34(1), 295 (2005)

    Google Scholar 

  41. Y. Kamata, Mater. Today 11(1), 30 (2008)

    Article  MathSciNet  Google Scholar 

  42. J. Zhao, R. Shi, L. Sai, X. Huang, Y. Su, Mol. Simul. 42(10), 809 (2016)

    Article  Google Scholar 

  43. L. Sai, L. Tang, J. Zhao, J. Wang, V. Kumar, J. Chem. Phys. 135(18), 184305 (2011)

    Article  ADS  Google Scholar 

  44. X. Huang, H.-G. Xu, S. Lu, Y. Su, R.B. King, J. Zhao, W. Zheng, Nanoscale 6(24), 14617 (2014)

    Article  ADS  Google Scholar 

  45. X. Huang, S.-J. Lu, X. Liang, Y. Su, L. Sai, Z.-G. Zhang, J. Zhao, H.-G. Xu, W. Zheng, J. Phys. Chem. C 119(20), 10987 (2015)

    Article  Google Scholar 

  46. X. Huang, Y. Su, L. Sai, J. Zhao, V. Kumar, J. Clust. Sci. 26(2), 389 (2015)

    Article  Google Scholar 

  47. L. Hong, H. Wang, J. Cheng, X. Huang, L. Sai, J. Zhao, Comput. Theor. Chem. 993, 36 (2012)

    Article  Google Scholar 

  48. X. Wu, S.-J. Lu, X. Liang, X. Huang, Y. Qin, M. Chen, J. Zhao, H.-G. Xu, R.B. King, W. Zheng, J. Chem. Phys. 146(4), 044306 (2017)

    Article  ADS  Google Scholar 

  49. X. Wu, Q. Du, S. Zhou, X. Huang, M. Chen, L. Miao, G. Yin, J. Wang, K. Wang, B. Issendorff, L. Ma, J. Zhao, Eur. Phys. J. Plus 135(9), 734 (2020)

    Article  Google Scholar 

  50. J.P. Perdew, K. Burke, M. Ernzerhof, Local and Gradient-Corrected Density Functionals. in Chemical Applications of Density-Functional Theory, ed. by B.B. Laird, R.B. Ross, T. Ziegler (American Chemical Society, 1996), Vol. 629, pp. 453

  51. W.R. Wadt, P.J. Hay, J. Chem. Phys. 82(1), 284 (1985)

    Article  ADS  Google Scholar 

  52. G.W.T.M.J. Frisch, H.B. Schlegel, G.E. Scuseria, M. Robb, J.R. Cheeseman, G. Scalmani, V., B.M. Barone, G.A. Petersson (Gaussian Inc, Wallingford, 2009)

  53. G.E. Scuseria, C.L. Janssen, H.F. Schaefer III., J. Chem. Phys. 89(12), 7382 (1988)

    Article  ADS  Google Scholar 

  54. G.E. Scuseria, H.F. Schaefer III., J. Chem. Phys. 90(7), 3700 (1989)

    Article  ADS  Google Scholar 

  55. T. Lu, F. Chen, J. Comput. Chem. 33(5), 580 (2012)

    Article  Google Scholar 

  56. J.E. Northrup, M.L. Cohen, Chem. Phys. Lett. 102(5), 440 (1983)

    Article  ADS  Google Scholar 

  57. J.E. Kingcade, H.M. Nagarathna-Naik, I. Shim, K.A. Gingerich, J. Phys. Chem. 90(13), 2830 (1986)

    Article  Google Scholar 

  58. C.C. Arnold, C. Xu, G.R. Burton, D.M. Neumark, J. Chem. Phys. 102(18), 6982 (1995)

    Article  ADS  Google Scholar 

  59. https://www.nist.gov/pml/atomic-spectra-database

  60. J.R. Lombardi, B. Davis, Chem. Rev. 102(6), 2431 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11904251, 12004272, 12004094, 12004095) and the research fund of Taizhou University (2018PY009, 2018PY014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqing Liang or Jijun Zhao.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Gao, N., Zhao, Z. et al. Theoretical insights of structural evolution and electronic properties of Ru2Gen (n = 1–16) clusters. Eur. Phys. J. Plus 137, 88 (2022). https://doi.org/10.1140/epjp/s13360-021-02299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02299-7

Navigation