Skip to main content
Log in

Biodeterioration in art: a case study of Munch's paintings

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 07 February 2022

This article has been updated

Abstract

Biocolonization and biodeterioration phenomena in Cultural Heritage is presently considered a relevant issue when planning conservation strategies and preservation measures in museum collections. Artworks such as easel paintings are source of various ecological niches for microbial communities’ growth due to the presence of several organic resources. Therefore, the identification of proteinaceous materials may play an important role in the evaluation of their conservation status, in the characterisation of the artistic technique, and in the definition of compatible conservation/restoration processes. Another challenge is to understand the microbiota associated to the degradative processes when developing conservation strategies in CH artworks. For this study Edvard Munch paintings belonging to Munch Museum in Oslo presenting surface alterations were analysed to increase the knowledge about the materials used by the painter and try to understand the source and the dynamics of the associated colonising microbiota, helping in devising a conservation intervention plan. Immunoenzymatic assays was carried out in microsamples allowing the detection of casein as the binder used by the artist. The high throughput sequencing approaches allowed us to explore and characterise the microbial communities that colonise these artworks. Bacterial communities found in these artworks were mainly composed by species characterised by proteolytic capacity, an important biodeteriogenic characteristic for these paintings. Simulation assays performed in paint models prepared with casein as binder display signs of degradative action promoted by the proteolytic strains isolated from the damaged areas. This approach can be useful to promote effective intervention processes in E. Munch’s paintings with the same pathologies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. J. Arslanoglu, J. Schultz, J. Loike, K. Peterson, Immunology and art: Using antibody-based techniques to identify proteins and gums in artworks. J. Biosci. 35(1), 3–10 (2010). https://doi.org/10.1007/s12038-010-0001-y

    Article  Google Scholar 

  2. M.T. Doménech-Carbó, Novel analytical methods for characterising binding media and protective coatings in artworks. Anal. Chim. Acta 621(2), 109–139 (2008). https://doi.org/10.1016/j.aca.2008.05.056

    Article  Google Scholar 

  3. L. Cartechini, M. Vagnini, M. Palmieri, L. Pitzurra, T. Mello, J. Mazurek, G. Chiari, Immunodetection of proteins in ancient paint media. Acc. Chem. Res. 43, 867–876 (2010)

    Article  Google Scholar 

  4. M. Colombini, F. Modugno, Characterisation of proteinaceous binders in artistic paintings by chromatographic techniques. J. Sep. Sci. 27, 147–160 (2004)

    Article  Google Scholar 

  5. A. Lluveras, I. Bonaduce, A. Andreotti, M.P. Colombini, GC/MS analytical procedure for the characterization of glycerolipids, natural waxes, terpenoid resins, proteinaceous and polysaccharide materials in the same paint microsample avoiding interferences from inorganic media. Anal. Chem. 82, 376–386 (2010)

    Article  Google Scholar 

  6. M. Gambino, F. Cappitelli, C. Cattò, A. Carpen, P. Principi, L. Ghezzi, I. Bonaduce, E. Galano, P. Pucci, L. Birolo, F. Villa, F. Forlani, A simple and reliable methodology to detect egg white in art samples. J. Biosci. 38, 397–408 (2013)

    Article  Google Scholar 

  7. C. Salvador, M. Silva, T. Rosado, R.V. Freire, R. Bordalo, A. Candeias, A.T. Caldeira, Biodeterioration of easel paintings: development of new mitigation strategies. Conservar Património 23, 119–124 (2016). https://doi.org/10.14568/cp2015032

    Article  Google Scholar 

  8. C. Salvador, R. Bordalo, M. Silva, T. Rosado, A. Candeias, A.T. Caldeira, On the conservation of easel paintings: evaluation of microbial contamination and artists materials. Appl. Phys. A 123(80), 1–13 (2017). https://doi.org/10.1007/s00339-016-0704-5

    Article  Google Scholar 

  9. G. Chimienti, R. Piredda, G. Pepe, I.D. van der Werf, L. Sabbatini, C. Crecchio, P. Ricciuti, A.M. D’Erchia, C. Manzari, G. Pesole, Profile of microbial communities on carbonate stones of the medieval church of San Leonardo di Siponto (Italy) by Illumina-based deep sequencing. Appl. Microbiol. Biotechnol. 100(19), 8537–8548 (2016). https://doi.org/10.1007/s00253-016-7656-8

    Article  Google Scholar 

  10. E. Sandbakken, E.S. Tveit, Preserving a master: Edvard Munch & his painted sketches. J. Urban Cult. Res. 5, 87–104 (2012)

    Google Scholar 

  11. I.C.A. Sandu, A. Candeias, K.J. van den Berg, E.G. Sandbakken, E.S. Tveit, H. van Keulen, Multi technique and multiscale approaches to the study of ancient and modern art objects on wooden and canvas support. Phys. Sci. Rev. (2019). https://doi.org/10.1515/psr-2018-0016

    Article  Google Scholar 

  12. E.G. Sandbakken, E.S. Tveit, Edvard Munch’s monumental sketches (1909–1916) for the Aula of Oslo University, Norway: conservation issues and treatments. Stud. Conserv. 57(sup1), S258–S267 (2013). https://doi.org/10.1179/2047058412y.0000000030

    Article  Google Scholar 

  13. B. Singer, T.E. Aslaksby, B. Topalova-Casadiego, E.S. Tveit, Investigation of materials used by Edvard Munch. Stud. Conserv. 55(4), 274–292 (2013). https://doi.org/10.1179/sic.2010.55.4.274

    Article  Google Scholar 

  14. C. Salvador, A. Branco, A. Candeias, A.T. Caldeira, Innovative approaches for immunodetection of proteic binders in art. E-Conserv. J. (2017). https://doi.org/10.18236/econs5.201708

    Article  Google Scholar 

  15. C. Salvador, A. Branco, A. Fialho, M. Semedo, S. Martins, M.F. Candeias, A. Candeias, Caldeira, A. T., and A. Karmali, Detection of proteic binders in easel paintings using monoclonal antibodies, in Science, Technology and Cultural Heritage, M.A. Rogerio-Candelera, Editor. 2014, CRC Press/Balkema Taylor & Francis Group: London. p. 329–334.

  16. S. Martins, A. Karmali, J. Andrade, A. Custódio, M.L. Serralheiro, Characterization of monoclonal antibodies against altered (T103I) amidase from pseudomonas aeruginosa. Mol. Biotechnol. 30, 207–219 (2005)

    Article  Google Scholar 

  17. S. Martins, A. Karmali, M. Serralheiro, Chromatographic behaviour of monoclonal antibodies against wild -type amidase from Pseudomonas aeruginosa on immobilized metal chelates. Biomed. Chromatogr. 25, 1327–1337 (2011)

    Article  Google Scholar 

  18. L. Dias, T. Rosado, A. Coelho, P. Barrulas, L. Lopes, P. Moita, A. Candeias, J. Mirao, A.T. Caldeira, Natural limestone discolouration triggered by microbial activity-a contribution. AIMS Microbiol. 4(4), 594–607 (2018). https://doi.org/10.3934/microbiol.2018.4.594

    Article  Google Scholar 

  19. L. Dias, T. Rosado, A. Candeias, J. Mirão, A.T. Caldeira, A change in composition, a change in colour: the case of limestone sculptures from the portuguese national museum of ancient art. J. Cult. Herit. 42, 255–262 (2020). https://doi.org/10.1016/j.culher.2019.07.025

    Article  Google Scholar 

  20. Y. Ding, C.S.C. Salvador, A.T. Caldeira, E. Angelini, N. Schiavon, Biodegradation and microbial contamination of limestone surfaces: an experimental study from batalha monastery, Portugal. Corros. Mater. Degrad. 2(1), 31–45 (2021). https://doi.org/10.3390/cmd2010002

    Article  Google Scholar 

  21. M. Schubert, S. Lindgreen, L. Orlando, AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016). https://doi.org/10.1186/s13104-016-1900-2

    Article  Google Scholar 

  22. J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Pena, J.K. Goodrich, J.I. Gordon, G.A. Huttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B.D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Turnbaugh, W.A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, R. Knight, QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5), 335–336 (2010). https://doi.org/10.1038/nmeth.f.303

    Article  Google Scholar 

  23. T.Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E.L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, G.L. Andersen, Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72(7), 5069–5072 (2006). https://doi.org/10.1128/AEM.03006-05

    Article  ADS  Google Scholar 

  24. C. Salvador, M.R. Martins, J.M. Arteiro, A.T. Caldeira, Molecular evaluation of some Amanita ponderosa and the fungal strains living in association with these mushrooms in the southwestern Iberian Peninsula. Annal. Microbiol. 64, 1179–1187 (2014)

    Article  Google Scholar 

  25. K. Domsch, W. Gams, T. Anderson, Compendium of soil fungi, vol. 1 (Academic Press, London, 1980)

    Google Scholar 

  26. P.M. Crous, G.J.M. Verkley, J.Z. Groenewald, and R.A. Samson, eds. Fungal Biodiversity. CBS Laboratory Manual Series, ed. P.M. Crous and R.A. Samson. 2009, CBS-KNAW Fungal Biodiversity centre: Utrecht, Netherlands

  27. J. Rinta - Kanto, A. Ouellette, G. Boyer, M. Twiss, T. Bridgeman, and S. Wilhelm,Quantification of Toxic Microcystis spp. during the 2003 and 2004 Blooms in Western Lake Erie using Quantitative Real-Time PCR. Environmental Science and Technology, 39 (11), 4198–4205 (2005).

  28. O. Prakash, Y. Nimonkar, M.S. Chavadar, N. Bharti, S. Pawar, A. Sharma, Y.S. Shouche, Optimization of nutrients and culture conditions for alkaline protease production using two endophytic micrococci: micrococcus aloeverae and micrococcus yunnanensis. Indian J. Microbiol. 57(2), 218–225 (2017). https://doi.org/10.1007/s12088-017-0638-4

    Article  Google Scholar 

  29. S. Hamdani, N. Asstiyani, D. Astriany, M. Singgih, S. Ibrahim, Isolation and identification of proteolytic bacteria from pig sludge and protease activity determination. IOP Conf. Series Earth Environ. Sci. 230, 012095 (2019). https://doi.org/10.1088/1755-1315/230/1/012095

    Article  Google Scholar 

  30. M. Zwieteing, I. Jongenburger, M. Rombouts, K. Van Triet, Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56(6), 1875–1881 (1990)

    Article  ADS  Google Scholar 

  31. B.R. Chowdhury, R. Chakraborty, U.R. Chaudhuri, Validity of modified gompertz and logistic models in predicting cell growth of pediococcus acidilactici H during the production of bacteriocin pediocin AcH. J. Food Eng. 80(4), 1171–1175 (2007). https://doi.org/10.1016/j.jfoodeng.2006.08.019

    Article  Google Scholar 

  32. R. Umana, Reevaluation of the method of Kunitz for the assay of proteolytic activities in liver and brain homogenate. Anals Biochem. 26(3), 430–438 (1968)

    Article  Google Scholar 

  33. O. Folin, V. Ciocalteu, On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 73, 627–650 (1927)

    Article  Google Scholar 

  34. O. N. N and A. C. O,Protease Production Capabilities of Micrococcus Luteus and Bacillus Species Isolated from Abattoir Environment. J. Microbiol. Res. 2 (5), 127–132 (2012). https://doi.org/10.5923/j.microbiology.20120205.03

  35. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  Google Scholar 

  36. J. Plesters, Ultramarine Blue, Natural and Artificial, in Studies in Conservation Taylor & Francis, Ltd. on behalf of the International Institute for Conservation of Historic and Artistic Works. p 62–91 (1966)

  37. S.-Y. Ooi, J.P. Ramalho, A. Pereira, S. Martins, C. Salvador, A.T. Caldeira, A simple method for labelling and detection of proteinaceous binders in art using fluorescent coumarin derivatives. Eur. Phys. J. Plus 134(71), 1–10 (2019). https://doi.org/10.1140/epjp/i2019-12478-4

    Article  Google Scholar 

  38. S.Y. Ooi, C. Salvador, S. Martins, A. Pereira, A.T. Caldeira, J.P.P. Ramalho, Development of a simple method for labeling and identification of protein binders in art. Heritage 2, 13 (2019). https://doi.org/10.3390/heritage2030150

    Article  Google Scholar 

  39. J. La Nasa, M. Zanaboni, D. Uldanck, I. Degano, F. Modugno, H. Kutzke, E.S. Tveit, B. Topalova-Casadiego, M.P. Colombini, Novel application of liquid chromatography/mass spectrometry for the characterization of drying oils in art: Elucidation on the composition of original paint materials used by Edvard Munch (1863–1944). Anal. Chim. Acta. 896, 177–189 (2015). https://doi.org/10.1016/j.aca.2015.09.023

    Article  Google Scholar 

  40. T. Bhowmik, E. Marth, Protease and peptidase activity of micrococcus species. J. Dairy Sci. 71, 2358–2365 (1988)

    Article  Google Scholar 

  41. A.B. Vermelho, M.N. Meirelles, A. Lopes, S.D. Petinate, A.A. Chaia, M.H. Branquinha, Detection of extracellular proteases from microorganisms on agar plates. Mem. Inst. Oswaldo Cruz 91(6), 755–760 (1996). https://doi.org/10.1590/s0074-02761996000600020

    Article  Google Scholar 

  42. G. Tennalli, B. Udapudi, P. Naik, Isolation of proteolytic bacteria and characterization of their proteolytic activity. Int. J. Adv. Eng. Sci. Technol. 2, 185–192 (2012)

    Google Scholar 

  43. J. Monod, The growth of bacteriaal cultures. Annual. Rev. Microbiol. 3, 371–394 (1949)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge for financial support to FCT—Foundation for Science and Technology, I.P., within the scope of the project: UIDB/04449/2020 and THE SCREAM Project – Touchstone for Heritage Endangered by Salt Crystallization, a Research Enterprise on the Art of Munch, ALT20-03–0145-FEDER-031577.

Funding

Fundação para a Ciência e a Tecnologia, UIDB/04449/2020, ALT20-03–0145-FEDER-031577.

Author information

Authors and Affiliations

Authors

Contributions

CS involved in manuscript writing, data interpretation, concept and experimental analysis and supplying the paint models; IS and ES involved in sampling; AC involved in supervision; ATC involved in sampling, concept, and supervision.

Corresponding author

Correspondence to Cátia Salvador.

Additional information

The original online version of this article was revised to change the author's name, Irina Sandu, to Irina Crina Anca Sandu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvador, C., Sandu, I.C.A., Sandbakken, E. et al. Biodeterioration in art: a case study of Munch's paintings. Eur. Phys. J. Plus 137, 11 (2022). https://doi.org/10.1140/epjp/s13360-021-02187-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02187-0

Navigation