Skip to main content
Log in

An interplay between beam–beam and beam coupling impedance effects in the Future Circular e\(^+\)e\(^-\) Collider

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In order to reach high luminosity, the Future Circular e\(^+\)e\(^-\) Collider will need very intense beams with small emittances and small beta functions in the interaction points. This is achieved with a large Piwinski angle combined with the crab waist collision scheme. Under these conditions, the luminosity and the beam–beam tune shifts are strongly influenced by the bunch length. On the other hand, in this machine, the beamstrahlung effect is dominant too, leading to an increase of bunch length and energy spread. Moreover, due to the extreme beam parameters, new important beam–beam instabilities have been found, such as the so-called coherent X-Z instability. Finally, the bunch length and energy spread are also affected by collective effects. In this paper, we study the beam–beam interaction, by focusing on the X-Z instability for FCC-ee, in the lowest energy configuration (45.6 Gev, Z-resonance), by taking into account, self-consistently, the combined effects of beamstrahlung and the machine impedance model that has been evaluated so far. Finally, we also discuss some possible mitigation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. https://fcc.web.cern.ch/Pages/default.aspx

  2. A. Abada et al., FCC-ee: the Lepton Collider: Future Circular Collider Conceptual Design Report. Eur. Phys. J. Spec. Top. 228(2), 261–623 (2019)

    Article  Google Scholar 

  3. CEPC Study Group, CEPC Conceptual Design Report. Volume 1–Accelerator. arXiv:1809.00285 (2018)

  4. P. Raimondi, D. Shatilov, M.Zobov, Beam-beam issues for colliding schemes with large Piwinski angle and crabbed waist. arXiv:physics/0702033 (2007)

  5. M. Zobov et al., Test of crab-waist collisions at DAFNE Phi factory. Phys. Rev. Lett. 104, 174801 (2010)

    Article  ADS  Google Scholar 

  6. D. Shatilov, M. Zobov, Beam-beam collisions with an arbitrary crossing angle: analytical tune shifts, tracking algorithm without Lorentz boost, crab-crossing. ICFA Beam Dyn. Newslett. 37, 99–109 (2005)

    Google Scholar 

  7. V. Telnov, Restriction on the energy and luminosity of e-e+ storage rings due to beamstrahlung. Phys. Rev. Lett. 110, 114801 (2013)

    Article  ADS  Google Scholar 

  8. K. Ohmi et al., Coherent beam–beam instability in collisions with a large crossing angle. Phys. Rev. Lett. 119, 134801 (2017)

    Article  ADS  Google Scholar 

  9. N. Kuroo, K. Hirosawa, K. Ohmi, K. Oide, D. Zhou, F. Zimmermann, Mode coupling theory in collisions with a large crossing angle, in 9th International Particle Accelerator Conference, THPAF089 (2018). https://doi.org/10.18429/JACoW-IPAC2018-THPAF089

  10. N. Kuroo, K. Ohmi, K. Oide, D. Zhou, F. Zimmermann, Cross-wake force and correlated head-tail instability in beam-beam collisions with a large crossing angle. Phys. Rev. Accel. Beams 21, 031002 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.031002

    Article  ADS  Google Scholar 

  11. D. Shatilov, FCC-ee parameter optimization. ICFA Beam Dyn. Newslett. 72, 30–41 (2017)

    Google Scholar 

  12. Y. Zhang, N. Wang, C. Lin, D. Wang, C. Yu, K. Ohmi, M. Zobov, Self-consistent simulations of beam-beam interaction in future e+ e- circular colliders including beamstrahlung and longitudinal coupling impedance. Phys. Rev. Accel. Beams 23, 104402 (2020)

    Article  ADS  Google Scholar 

  13. D. Leshehok, S. Nikitin, Y. Zhang, M. Zobov, Combined influence of beamstrahlung and coupling impedance on beam energy spread and length in future lepton colliders. Phys. Rev. Accel. Beams 23, 101003 (2020)

    Article  ADS  Google Scholar 

  14. D. Boussard, Observation of microwave longitudinal instabilities in the CPS, CERN-LabII-RF-INT-75-2 (CERN, Geneva, 1975)

    Google Scholar 

  15. N. Wang et al., Mitigation of coherent beam instabilities in CEPC. CERN Yellow Rep. Conf. Proc. 9, 286–290 (2020)

    Google Scholar 

  16. https://www.3ds.com/products-services/simulia/products/cst-studio-suite

  17. M. Migliorati, E. Belli, M. Zobov, Impact of the resistive wall impedance on beam dynamics in the future circular e+e- collider. Phys. Rev. Accel. Beams 21, 041001 (2018)

    Article  ADS  Google Scholar 

  18. E. Belli, P.C. Pinto, G. Rumolo, A. Sapountzis, T. Sinkovits, M. Taborelli, B. Spataro, M. Zobov, G. Castorina, M. Migliorati, Electron cloud buildup and impedance effects on beam dynamics in the future circular e+e- collider and experimental characterization of thin TiZrV vacuum chamber coatings. Phys. Rev. Accel. Beams 21, 111002 (2018)

    Article  ADS  Google Scholar 

  19. N. Mounet, The LHC Transverse Coupled Bunch Instability. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (2012)

  20. A.W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley, New York, 1993)

    Google Scholar 

  21. K.Y. Ng, Physics of Intensity Dependent Beam Instabilities (World Scientific, Singapore, 2006)

    MATH  Google Scholar 

  22. J. Haissinski, Il Nuovo Cimento 18B(1), 72 (1973)

  23. A.W. Chao, M. Tigner, Handobook of Accelerator Physics and Engineering (World Scientific Publishing Co. Pte. Ltd, Singapore, 1998)

    Google Scholar 

  24. https://github.com/PyCOMPLETE/PyHEADTAIL

  25. M. Migliorati, S. Persichelli, H. Damerau, S. Gilardoni, S. Hancock, L. Palumbo, Beam-wall interaction in the CERN Proton Synchrotron for the LHC upgrade. Phys. Rev. Accel. Beams 16, 031001 (2013)

    Article  ADS  Google Scholar 

  26. M. Migliorati, L. Palumbo, Multibunch and multi-particle simulation code with an alternative approach to wakefield effects. Phys. Rev. ST Accel. Beams 18, 031001 (2015)

    Article  ADS  Google Scholar 

  27. Y. Zhang, Beam-beam effects in BEPC-II, in ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders. CERN, Geneva, pp. 37–41 (2013). https://doi.org/10.5170/CERN-2014-004.37

  28. K. Ohmi, Simulation of beam-beam effects in a circular e+e- collider. Phys. Rev. E 62, 7287 (2000)

    Article  ADS  Google Scholar 

  29. K. Ohmi, private communication

  30. ELEGANT. https://ops.aps.anl.gov/elegant.html

  31. N. Carmignani, J. Jacob, B. Nash, S. White, Harmonic RF System for the ESRF EBS, Proceedings of IPAC2017, Copenhagen, Denmark, pp. 3684–3687 (2017)

  32. H.S. Xu, N. Wang, Influences of harmonic cavities on the single-bunch instabilities in electron storage rings, in 60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources, Shanghai, China, pp. 128–132 (2018). https://doi.org/10.18429/JACoW-FLS2018-WEP2PT024

  33. E. Métral, M. Migliorati, Longitudinal and transverse mode coupling instability: Vlasov solvers and tracking codes. Phys. Rev. ST Accel. Beams 23, 071001 (2020)

    Article  ADS  Google Scholar 

  34. D. Shatilov, 133th FCC-ee Optics Design Meeting & 4th FCCIS WP2.2 Meeting, ‘Larger Momentum Compaction at Z, as another possible option’ (2021). https://indico.cern.ch/event/1014189

  35. F. Yaman, Electron Cloud Simulations for FCC-ee Collider Dipoles: Comparisons of SEY Models, Longer Bunch Space and Higher Intensity, 135th FCC-ee optics meeting. https://indico.cern.ch/event/1017226

  36. L. Mether, Modeling of fast Beam-Ion Instabilities, CERN Yellow Rep. Conf. Proc. 1, 63–68 (2018). https://doi.org/10.23732/CYRCP-2018-001.63

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Migliorati.

Additional information

This work was partially supported by the European Union’s Horizon 2020 research and innovation programme under Grant No 951754—FCCIS Project, by the National Natural Science Foundation of China, Grant No. 11775238, and by INFN National committee V through the ARYA project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migliorati, M., Carideo, E., De Arcangelis, D. et al. An interplay between beam–beam and beam coupling impedance effects in the Future Circular e\(^+\)e\(^-\) Collider. Eur. Phys. J. Plus 136, 1190 (2021). https://doi.org/10.1140/epjp/s13360-021-02185-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02185-2

Navigation