Skip to main content
Log in

Reconstruction method applied to bounce cosmology and inflationary scenarios in cosmological f(G) gravity

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The modified theory of gravity f(G) is addressed in this work where G means the Gauss–Bonnet invariant. We investigate through this paper, some f(G) models susceptible to describe some evolution phase of our universe. Accordingly we introduce a special reconstruction program called reconstruction method and based on the Friedmann space time metric which is an ideal manifold to represent our universe at large scale. Firstly, this reconstruction procedure is developed for f(G) forms that can give rise to scale-factor bounce evolutions. New Gauss–Bonnet modified gravity models with bouncing behavior in the early stages as well the late-time of the universe evolution are provided. The f(G) models near the bounce satisfy some well-known f(G) gravity properties which make them to explain the transition from the matter or radiation domination epoch to the dark matter domination epoch, whereas away from the bounce, only one epoch is recovered. Secondly, we also apply the reconstruction method to the inflationary regime. The quasi de Sitter evolution is involved and from the extraction and analysis of its corresponded Hubble slow-roll parameters, one obtains the appropriate cosmological inflationary f(G) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.S. Eddington, Mathematical Theory of Relativity (Cambridge University Press, Cambridge, 1923)

    MATH  Google Scholar 

  2. H. Weyl, Annalen der Physik 364, 101 (1919)

    Article  ADS  Google Scholar 

  3. A.G. Riess et al., Supernova Search Team. Astron. J. 116, 1009 (1998). arXiv:astro-ph/9812133 [astro-ph]

    Article  ADS  Google Scholar 

  4. P. Brax, C. van de Bruck, A.-C. Davis, D.J. Shaw, Phys. Rev. D 78, 104021 (2008). arXiv:0806.3415 [astro-ph]

    Article  ADS  MathSciNet  Google Scholar 

  5. C. Schimdt et al., Astron. Astrophys. 463, 405 (2007)

    Article  ADS  Google Scholar 

  6. D.N. Spergel et al., WMAP Collaboration. Astrophys. J. Suppl. 148, 175 (2003). arXiv:astroph/0302209

    Article  ADS  Google Scholar 

  7. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012). https://doi.org/10.1007/s10509-012-1181-8 [arXiv:1205.3421 [gr-qc]]

    Article  ADS  Google Scholar 

  8. K. Bamba, C.Q. Geng, C.C. Lee, L.W. Luo, JCAP 1101, 021 (2011). https://doi.org/10.1088/1475-7516/2011/01/021 [arXiv:1011.0508 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  9. S. Nojiri, S.D. Odintsov, Phys. Rev. D 74, 086005 (2006). https://doi.org/10.1103/PhysRevD.74.086005 [arXiv:hep-th/0608008]

    Article  ADS  Google Scholar 

  10. E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 043539 (2004). https://doi.org/10.1103/PhysRevD.70.043539 [arXiv:hep-th/0405034]

    Article  ADS  Google Scholar 

  11. S. Capozziello, V.F. Cardone, S. Carloni, A. Troisi, Int. J. Mod. Phys. D 12, 1969 (2003). https://doi.org/10.1142/S0218271803004407 [arXiv:astro-ph/0307018]

    Article  ADS  Google Scholar 

  12. S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002). https://doi.org/10.1142/S0218271802002025 [arXiv:grqc/0201033]

    Article  ADS  Google Scholar 

  13. S. Capozziello, V.F. Cardone, E. Piedipalumbo, C. Rubano, Class. Quant. Grav. 23, 1205 (2006). https://doi.org/10.1088/0264-9381/23/4/009 [arXiv:astro-ph/0507438]

    Article  ADS  Google Scholar 

  14. R. Aldrovandi, J. G. Pereira,Teleparallel Gravity, in http://www.ift.unesp.br/users/jpereira/tele.pdf

  15. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rept. 692, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.001 [arXiv:1705.11098 [gr-qc]]

    Article  ADS  Google Scholar 

  16. S. Nojiri, S. D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115–146 (2007). https://doi.org/10.1142/S0219887807001928

  17. S. Nojiri, S.D. Odintsov, Phys. Rept. 505, 59 (2011)

    Article  ADS  Google Scholar 

  18. S. Capozziello, M. De Laurentis, Phys. Rept. 509, 167 (2011)

    Article  ADS  Google Scholar 

  19. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D (2018). https://doi.org/10.1103/PhysRevD.97.124042 [arXiv:1806.01588 [gr-qc]]

    Article  Google Scholar 

  20. S.Y. Zhou, E.J. Copelandy, P.M. Saffinz, JCAP 07, 009 (2009). [arXiv:0903.4610 [gr-qc]]

    Article  ADS  Google Scholar 

  21. V. Faraoni, S. Capozziello, Fundam. Theor. Phys (2010). https://doi.org/10.1007/978-94-007-0165-6

    Article  Google Scholar 

  22. S.D. Odintsov, V.K. Oikonomou, A.V. Timoshkin, E.N. Saridakis, R. Myrzakulov, Annals Phys. 398, 238–253 (2018). https://doi.org/10.1016/j.aop.2018.09.015 [arXiv:1810.01276 [gr-qc]]

    Article  ADS  Google Scholar 

  23. K. Bamba, Gen. Rel. Grav. 50, 53 (2018)

    Article  ADS  Google Scholar 

  24. Y.-F. Cai, S. Capozziello, M. De Laurentis, E.N. Saridakis. arXiv:1511.07586v2 [gr-qc]

  25. A.H. Guth, Phys. Rev. D 23, 347 (1981). https://doi.org/10.1103/PhysRevD.23.347

    Article  ADS  Google Scholar 

  26. A.D. Linde, Phys. Lett. 129B, 177 (1983). https://doi.org/10.1016/0370-2693(83)90837-7

    Article  ADS  Google Scholar 

  27. K. Bamba, S. Nojiri, S.D. Sergei, Odintsov S. Diego, Phys. Rev. D 90, 124061 (2014). [arXiv:1410.3993 [hep-th]]

    Article  ADS  Google Scholar 

  28. K. Bamba, S. Nojiri, S.D. Odintsov, Phys. Lett. B 737, 374 (2014). [arXiv:1406.2417 [hepth]]

    Article  ADS  Google Scholar 

  29. Q. Gao, Y. Gong, Phys. Lett. B 734, 41 (2014). [arXiv:1403.5716 [gr-qc]]

  30. K. Kleidis, V.K. Oikonomou, Int. J. Geom. Methods Mod. Phys. 15(08), 1850137 (2018). https://doi.org/10.1142/S0219887818501372 [arXiv:1803.10748 [gr-qc]]

    Article  MathSciNet  Google Scholar 

  31. K. Kleidis, V.K. Oikonomou, Int. J. Geom. Methods Mod. Phys. 15, 121850212 (2018). https://doi.org/10.1142/S0219887818502122 [arXiv:1808.04674 [gr-qc]]

    Article  Google Scholar 

  32. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 98(2), 024013 (2018). https://doi.org/10.1103/PhysRevD.98.024013 [arXiv:1806.07295 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  33. S.D. Odintsov, V.K. Oikonomou, Int. J. Mod. Phys. D 26(08), 1750085 (2017). [arXiv:1512.04787 [gr-qc]]

    Article  ADS  Google Scholar 

  34. S.D. Odintsov, V.K. Oikonomou, F.P. Fronimos, K.V. Fasoulakos, Phys. Rev. D 102(10), 104042 (2020). [arXiv:2010.13580 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  35. M.J.S. Houndjo, Eur. Phys. J. C 77(9), 607 (2017). https://doi.org/10.1140/epjc/s10052-017-5171-4 [arXiv:1706.09315 [gr-qc]]

    Article  ADS  Google Scholar 

  36. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 98(4), 044039 (2018). [arXiv:1808.05045 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Nojiri, S. Odintsov, Phys. Lett. B 631, 1–6 (2005). https://doi.org/10.1016/j.physletb.2005.10.010 [arXiv:hep-th/0508049]

    Article  ADS  MathSciNet  Google Scholar 

  38. G. Cognola, E. Elizalde, S.I. Nojiri, S.D. Odintsov, S. Zerbini, Phys. Rev. D 73, 084007 (2006). [arXiv:hep-th/0601008]

    Article  ADS  Google Scholar 

  39. Saikat Chakrabarty, Phys. Rev. D 98, 024009 (2018). [arXiv:1803.01594 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  40. C. Ainamon, M.G. Ganiou, H.F. Abadji, M.J.S. Houndjo, Int. J. Geom. Methods Mod. Phys. 18(01), 2150012 (2021)

    Article  Google Scholar 

  41. E. Elizalde, R. Myrzakulov, V.V. Obukhov, D. Sàez-Gómez, Class. Quant. Grav. 27, 095007 (2010)

    Article  ADS  Google Scholar 

  42. S.D. Odintsov, V.K. Oikonomou, Phys. Lett. B 797, 134874 (2019). [arXiv:1908.07555 [gr-qc]]

    Article  MathSciNet  Google Scholar 

  43. E. Elizalde, S.D. Odintsov, V.K. Oikonomou, T. Paul, Nucl. Phys. B 954, 114984 (2020). [arXiv:2003.04264 [gr-qc]]

    Article  Google Scholar 

  44. S.D. Odintsov, V.K. Oikonomou, F.P. Fronimos, Nucl. Phys. B 958, 115135 (2020). [arXiv:2003.13724 [gr-qc]]

    Article  Google Scholar 

  45. M. Novello, S.E.P. Bergliaffa, Phys. Rept. 463, 127–213 (2008). [arXiv:0802.1634 [astro-ph]]

    Article  ADS  Google Scholar 

  46. R.H. Brandenberger, V.F. Mukhanov, A. Sornborger, Phys. Rev. D 48, 1629 (1993). [arXiv:grqc/9GB303001]

    Article  ADS  MathSciNet  Google Scholar 

  47. P. Rudra, Int. J. Mod. Phys. D 24(02), 1550013 (2014). [arXiv:14113583v1 [gr-qc]]

    Article  ADS  Google Scholar 

  48. S. Nojiri, S.D. Odintsov, A. Toporensky, P. Tretyakov, Gen. Rel. Grav. 42, 1997–2008 (2010). [arXiv:0912.2488 [hep-th]]

    Article  ADS  Google Scholar 

  49. N.G. Montelongo, T. Harko, Phys. Rev. D 83, 104032 (2011). [arXiv:1011.4159 [gr-qc]]

    Article  ADS  Google Scholar 

  50. M.R. Setare, N. Mohammadipour, arXiv:1206.0245 [physics.gen-ph]

  51. V.K. Oikonmou, Phys. Rev. D 92, 124027 (2015). https://doi.org/10.1103/PhysRevD.92.124027

  52. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  53. G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov ,S. Zerbini (2006), arXiv:hep-th/0611198

  54. K. Bamba, A.N. Makarenko, A.N. Myagky, S. Nojiri, S.D. Odintsov, JCAP 1401, 008 (2014). https://doi.org/10.1088/1475-7516/2014/01/008 [arXiv:1309.3748 [hep-th]]

    Article  ADS  Google Scholar 

  55. A.R. Rastkar, M.R. Setare, F. Darabi, Astrophys. Space Sci. 337, 487 (2012)

    Article  ADS  Google Scholar 

  56. B. Li, J.D. Barrow, D.F. Mota, arXiv:0705.3795v3 [gr-qc]

  57. L. Amendola, R. Gannouji, D. Polarski, S. Tsujikawa, Phys. Rev. D 75, 083504 (2007). arXiv:gr-qc/0612180

    Article  ADS  Google Scholar 

  58. A. Escofet, E. Elizalde, Mod. Phys. Lett. A 31(17), 1650108 (2016). https://doi.org/10.1142/S021773231650108X [arXiv:1510.05848 [gr-qc]]

    Article  ADS  Google Scholar 

  59. Y.-F. Cai, S.-H. Chen, J.B. Dent, S. Dutta, E.N. Saridakis, Class. Quant. Grav. 28, 215011 (2011). [arXiv:1104.4349 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  60. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 96(10), 104049 (2017). [arXiv:1711.02230 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  61. P. Wu, H.W. Yu, Eur. Phys. J. C 71, 1552 (2011). [arXiv:1008.3669 [gr-qc]]

    Article  ADS  Google Scholar 

  62. V.F. Cardone, N. Radicella, S. Camera, Phys. Rev. D 85, 124007 (2012). [arXiv:1204.5294 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  63. M.G. Ganiou, P. Logbo, M.J. Houndjo, J. Tossa Eur. Phys. J. Plus 134, 45 (2019). https://doi.org/10.1140/epjp/i2019-12393-8

    Article  Google Scholar 

  64. S. Capozziello, V.F. Cardone, H. Farajollahi, A. Ravanpak, Phys. Rev. D 84, 043527 (2011)

    Article  ADS  Google Scholar 

  65. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rept. 692, 1–104 (2017). [arXiv:1705.11098]

    Article  ADS  Google Scholar 

  66. K. Bamba, S.D. Odintsov, E.N. Saridakis, Mod. Phys. Lett. A 32(21), 1750114 (2017). [arXiv:1605.02461 [gr-qc]]

    Article  ADS  Google Scholar 

  67. S.D. Odintsov, V.K. Oikonomou, Phy. Rev. D 92, 124024 (2015)

    Article  ADS  Google Scholar 

  68. K. Bamba, S. Nojiri, S.D. Odintsov, Phys. Lett. B 737, 374 (2014). [arXiv:1406.2417 [hepth]]

    Article  ADS  Google Scholar 

  69. A. De Felice, S. Tsujikawa, Living Rev. Rel. 13, 3 (2010). [arXiv:1002.4928 [gr-qc]]

    Article  Google Scholar 

  70. A. De Felice, S. Tsujikawa, Phys. Lett. B 675, 1–8 (2009). [arXiv:0810.5712 [hep-th]]

    Article  ADS  Google Scholar 

  71. K. Bamba, S.D. Odintsov, E.N. Saridakis, Mod. Phys. Lett. A 32(21), 1750114 (2017). https://doi.org/10.1142/S0217732317501140 [arXiv:1605.02461]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganiou, M.G., Houndjo, M.J.S., Aïnamon, C. et al. Reconstruction method applied to bounce cosmology and inflationary scenarios in cosmological f(G) gravity. Eur. Phys. J. Plus 137, 208 (2022). https://doi.org/10.1140/epjp/s13360-021-02140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02140-1

Navigation