Skip to main content
Log in

An analytic study of bioheat transfer Pennes model via modern non-integers differential techniques

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Due to increasing utilization of thermal treatment methods in medical science, the influence of blood’s perfusion has become totally dependent on the heat transfer analysis like heart and neurosurgery need temperature measurement during thermal treatment of the prostate. This manuscript presents the analytical treatment to the bioheat transfer Pennes model via modern fractional derivatives. The heat transfer between blood and tissue is analyzed through temperature distribution based on the arterial blood temperature and the volumetric perfusion rate. The modeling of bioheat transfer equation has been established via Atangana–Baleanu and Caputo–Fabrizio non-integer order fractional derivatives within the order \({\mu }_{1}\in [\mathrm{0,1}]\) and \({\mu }_{2}\in [\mathrm{0,1}]\). The mathematical technique of Laplace transform is invoked on the fractional bioheat transfer equation based on the imposed conditions. The results are demonstrated on the basis of comparison of temperature distribution via Atangana–Baleanu and Caputo–Fabrizio non-integer order fractional derivatives. Finally, the graphical comparison of temperature distribution via both fractional differentiations suggests that the crucial factors to be considered in controlling the characteristics of bioheat transfer Pennes model with the help of non-singular and non-local kernels based on strong memory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I. Podlubny, Fractional differential equations: an introduction to fractional derivatives. Fractional differential equations, to methods of their solution and some of their applications, 198, Academic press; (1998)

  2. K.M. Saad, J.F. Gómez-Aguilar, Analysis of reaction-diffusion system via a new fractional derivative with non-singular kernel. Physica A 509, 703–716 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  3. A.A. Kashif, K. Ilyas, G.A. José Francisco, Thermal effects of magnetohydrodynamic micropolar fluid embedded in porous medium with Fourier sine transform technique. J. Braz. Soc. Mech. Sci. Eng. 41, 174–181 (2019). https://doi.org/10.1007/s40430-019-1671-5

    Article  Google Scholar 

  4. A. Atangana, J.F. Gómez-Aguilar, Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114, 516–535 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. A.A. Kashif, Y. Ahmet, Fractional treatment of vibration equation through modern analogy of fractional differentiations using integral transforms. Iran. J. Sci. Technol. Trans. A Sci. 43, 1–8 (2019). https://doi.org/10.1007/s40995-019-00687-4

    Article  MathSciNet  Google Scholar 

  6. A. Atangana, J.F. Gómez-Aguilar, Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys .J. Plus. 133, 1–23 (2018)

    Article  Google Scholar 

  7. K.A. Abro, A.M. Ali, A.M. Anwer, Functionality of circuit via modern fractional differentiations, analog integrated circuits and signal processing: an. Int. J. 99(1), 11–21 (2019). https://doi.org/10.1007/s10470-018-1371-6

    Article  Google Scholar 

  8. S. Ambreen, A.A. Kashif, A.S. Muhammad, Thermodynamics of magnetohydrodynamic Brinkman fluid in porous medium: Applications to thermal science. J. Therm. Anal. Calorim. (2018). https://doi.org/10.1007/s10973-018-7897-0

    Article  Google Scholar 

  9. J.F. Gómez-Aguilar, A. Atangana, fractional hunter-saxton equation involving partial operators with bi-order in riemann-liouville and liouville-caputo sense. Eur Phys J Plus 132(2), 1–18 (2017)

    Article  Google Scholar 

  10. A.K. Abro, D.C. Ali, A.A. Irfan, K. Ilyas, Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo-Fabrizio and Atangana-Baleanu fractional derivatives embedded in porous medium, J Therm Analy Calorim, pp. 1–11 (2018). https://doi.org/10.1007/s10973-018-7302-z.

  11. H.L. Muzaffar, A.A. Kashif, A.S. Asif, Helical flows of fractional viscoelastic fluid in a circular pipe. Int. J. Adv. Appl. Sci. 4(10), 97–105 (2017)

    Article  Google Scholar 

  12. K.A. Abro, H. Mukarrum, M.B. Mirza, Slippage of fractionalized Oldroyd-B fluid with magnetic field in porous medium. Prog. Fraction. Different. Appl. Int. J. 3(1), 69–80 (2017)

    Article  Google Scholar 

  13. J. Muhammad, K.A. Abro, A.K. Najeeb, Helices of fractionalized Maxwell fluid. Nonlinear Eng. 4(4), 191–201 (2015)

    Google Scholar 

  14. Q. Sania, A. Abdon. Mathematical analysis of dengue fever outbreak by novel fractional operators with field data. Phys. A Stat. Mech. Appl. (2019). https://doi.org/10.1016/j.physa.2019.121127.

  15. K.A. Abro, A. Atangana, Numerical and mathematical analysis of induction motor by means of AB–fractal–fractional differentiation actuated by drilling system. Numer. Methods Partial Diff. Eq., pp. 1–15 (2020). https://doi.org/10.1002/num.22618

  16. A. Dzielinski, G. Sarwas, D. Sierociuk, Comparison and validation of integer and fractional order ultracapacitor models. Adv. Diff. Equ. 2011(1), 11–23 (2011)

    Article  MathSciNet  Google Scholar 

  17. K.A. Abro, I.Q. Memon, A. Siyal, Thermal transmittance and thermo-magnetization of unsteady free convection viscous fluid through non-singular differentiations. Phys. Scripta (2020). https://doi.org/10.1088/1402-4896/abc981

  18. K.A. Kashif, Fractional characterization of fluid and synergistic effects of free convective flow in circular pipe through Hankel transform. Phys. Fluids 32, 123102 (2020). https://doi.org/10.1063/5.0029386

    Article  Google Scholar 

  19. I.Q. Memon, K.A. Abro, M.A. Solangi, A.A. Shaikh, Functional shape effects of nanoparticles on nanofluid suspended in ethylene glycol through Mittage-Leffler approach. Phys. Scripta, 96(2), 025005 (2020). https://doi.org/10.1088/1402-4896/abd1b3

  20. K.A. Abro, S. Qureshi, A. Atangana, Mathematical and numerical optimality of non-singular fractional approaches on free and forced linear oscillator. Nonlinear Eng., 9, 449−456 (2020)

  21. K.A. Abro, Numerical study and chaotic oscillations for aerodynamic model of wind turbine via fractal and fractional differential operators. Numer. Methods Partial Diff. Eq., pp. 1–15, (2020). https://doi.org/10.1002/num.22727

  22. T.S. Syed, K.A. Abro, A. Sikandar, Role of single slip assumption on the viscoelastic liquid subject to non-integer differentiable operators. Math. Meth. Appl. Sci., pp. 1–16. (2021). https://doi.org/10.1002/mma.7164.

  23. K.A. Abro, J.F. Gomez-Aguilar, Fractional modeling of fin on non-Fourier heat conduction via modern fractional differential operators. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-020-05243-6

  24. Q. Ali, S. Riaz, A.U. Awan, K.A. Abro, A mathematical model for thermography on viscous fluid based on damped thermal flux, Zeitschrift für Naturforschung A, 76(3), 285–294 (2021). https://doi.org/10.1515/zna-2020-0322

  25. N.A. Sheikh, F. Ali, M. Saqib, I. Khan, S.A.A. Jan, A.S. Alshomrani, M. Alghamdi, S, Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction. Results Phys. 7, 789–800 (2017)

    Article  ADS  Google Scholar 

  26. I. Siddique, N.A. Shah, K.A. Abro, Thermography of ferromagnetic Walter’s-B fluid through varying thermal stratification. South Afr. J. Chem. Eng. 36, 118–126 (2021)

  27. L. Zheng, Y. Liu, X. Zhang, Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative. Nonlinear Anal Real World Appl. 13(2), 513–523 (2012)

    Article  MathSciNet  Google Scholar 

  28. N. Shahid, A study of heat and mass transfer in a fractional MHD flow over an infinite oscillating plate. Springer Plus, 4, 1–21 (2015).

  29. K.A. Abro, A. Atangana, J.F. Gomez‑Aguilar, Role of bi‑order atangana–aguilar fractional differentiation on drude model: an analytic study for distinct sources. Opt. Quant. Electron. 53, 177 (2021). https://doi.org/10.1007/s11082-021-02804-3

  30. A. Abdon, D. Baleanu New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Thermal Sci. 18. (2016). https://doi.org/10.2298/TSCI160111018A.

  31. K.A. Abro, J.F. Gomez-Aguilar, A comparison of heat and mass transfer on a Walter’s-B fluid via caputo-fabrizio versus atangana-baleanu fractional derivatives using the fox-H function. Eur. Phys. J. Plus 134, 101 (2019). https://doi.org/10.1140/epjp/i2019-12507-4

    Article  Google Scholar 

  32. A.U. Awan, M. Aziz, N. Ullah, S. Nadeem, K.A. Abro, Thermal analysis of oblique stagnation point low with slippage on second-order fluid. J. Thermal Anal. Calorim. (2021). https://doi.org/10.1007/s10973-021-10760-z

  33. M. Saqib, A. Farhad, K. Ilyas, A.S. Nadeem, S. Sharidan, Convection in ethylene glycol based molybdenum disulfide nanofluid: Atangana-Baleanu frictional derivatives approach. J. Therm Anal. Calorim. (2018). https://doi.org/10.1007/s10973-018-7054-9

    Article  MATH  Google Scholar 

  34. A.U. Awan, A. Sharif, K.A. Abro, M. Ozair, T. Hussain, Dynamical aspects of smoking model with cravings to smoke. Nonlinear Eng. (2021). https://doi.org/10.1515/nleng-2021-0008

  35. M. Tahir, A.U. Awan, K.A. Abro, Extraction of optical solitons in birefringent fibers for Biswas-Arshed equation via extended trial equation method. Nonlinear Eng. 10, 146−158 (2021). https://doi.org/10.1515/nleng-2021-0011

  36. I. Koca, A. Atangana, Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives. Therm. Sci. (2017). https://doi.org/10.2298/TSCI160102102M

    Article  Google Scholar 

  37. A.A. Kashif, A. Atangana, A computational technique for thermal analysis in coaxial cylinder of one-dimensional flow of fractional Oldroyd-B nanofluid. Int. J. Ambient Energy (2021). https://doi.org/10.1080/01430750.2021.1939157

  38. P. Sopasakis, H. Sarimveis, P. Macheras, A. Dokoumetzidis, Fractional calculus in pharmacokinetics. J. Pharmacokin. Pharmacodyn. 45, 107 (2018)

    Article  Google Scholar 

  39. K.M. Saad, Comparing the caputo, caputo-fabrizio and atangana-baleanu derivative with fractional order: fractional cubic isothermal auto-catalytic chemical system. Eur. Phys. J. Plus 133, 94 (2018). https://doi.org/10.1140/epjp/i2018-11947-6

    Article  Google Scholar 

  40. J.F. Gómez-Aguilar, A.A. Kashif, K. Olusola, Y. Ahmet, Chaos in a calcium oscillation model via Atangana-Baleanu operator with strong memory, The European Physical Journal Plus, Eur. Phys. J. Plus 134, 140, (2019). https://doi.org/10.1140/epjp/i2019-12550-1

  41. U. Sümeyra, U. Esmehan, Ö. Necati, H. Zakia, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative. Chaos Solitons Fractals 118, 300–306 (2019)

    Article  MathSciNet  Google Scholar 

  42. A.K. Ali, A. Atangana, Strange attractors and optimal analysis of chaotic systems based on fractal-fractional differential operators. Int. J. Modell. Simul. (2021). https://doi.org/10.1080/02286203.2021.1966729

  43. F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative. Chaos Solitons Fractals 117, 16–20 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  44. K.A. Abro, J.F. Gomez-Aguilar, Dual fractional analysis of blood alcohol model via non-integer order derivatives. Fractional Derivatives with Mittag-Leffler Kernel, Studies in Systems, Decision and Control 194. https://doi.org/10.1007/978-3-030-11662-0_5.

  45. B.S.T. Alkahtani, A. Atangana, Controlling the wave movement on the surface of shallow water with the Caputo-Fabrizio derivative with fractional order. Chaos Solitons Fractals 89, 539–546 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  46. A.A. Kashif, K. Ilyas, Analysis of heat and mass transfer in mhd flow of generalized casson fluid in a porous space via non-integer order derivative without singular Kernel. Chin. J. Phys. 55(4), 1583–1595 (2017)

    Article  MathSciNet  Google Scholar 

  47. M.O. Kolade, Behavioural study of symbiosis dynamics via the Caputo and Atangana-Baleanu fractional derivatives. Chaos Solitons Fractals 122, 89–101 (2019)

    Article  MathSciNet  Google Scholar 

  48. M.M. Dur, A.A. Kashif, A.S. Muhammad, Application of modern approach of Caputo-Fabrizio fractional derivative to MHD second grade fluid through oscillating porous plate with heat and mass transfer. Int. J. Adv. Appl. Sci. 5(10), 97–105 (2018)

    Article  Google Scholar 

  49. R.S. Damor, S. Kumar, A.K. Shukla, Numerical solution of fractional bioheat equation with constant and sinusoidal heat flux condition on skin tissue. Am. J. Math. Anal. 1, 20–24 (2013)

    Google Scholar 

  50. M.A. Ezzat, N.S. AlSowayan, Z.I.A. Al-Muhiameed, S.M. Ezzat, Fractional modeling of Pennes bioheat transfer equation. Heat Mass Transfer 50, 907–914 (2014). https://doi.org/10.1007/s00231-014-1300-x

    Article  ADS  Google Scholar 

  51. X. Jiang, H. Qi, Thermal wave model of bioheat transfer with modified Riemann–Liouville fractional derivative, J. Phys. A Math. Theor. 45 (2012). Id 485101.

  52. A. Lakhssassi, E. Kengne, H. Semmaoui, Modifed Pennes’ equation modelling bio-heat transfer in living tissues: analytical and numerical analysis. Nat. Sci. 2, 1375–1385 (2010)

    Google Scholar 

  53. M. Tun, U.C. amdali, C Parmaksizoglu, S.C. ikrik, The bioheat transfer equation and its applications in hyperthermia treatments. Eng. Comput. 23, 451–463 (2006)

    Article  ADS  Google Scholar 

  54. L.F. Luis, J.F. Neville, L. Maria, M. Nobrega, S. Rebelo, Fractional Pennes’ bioheat equation: theoretical and numerical studies. Fraction. Calc. Appl. Anal. 18 (4) (2015). https://doi.org/10.1515/fca-2015-0062.

  55. R.S. Damor, K. Sushil, A.K. Shukla, Solution of fractional bioheat equation in terms of Fox’s H-function. Springerplus 5, 111 (2016). https://doi.org/10.1186/s40064-016-1743-2

    Article  Google Scholar 

  56. A. Atangana, D. Baleanu. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Thermal Sci., pp. 1–7 (2016)

  57. K.A. Abro, A. Atangana, A.R. Khoso, Dynamical behavior of fractionalized simply supported beam: an application of fractional operators to Bernoulli-Euler theory. Nonlinear Eng. (2021). https://doi.org/10.1515/nleng-2021-0017

  58. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singu- lar kernel. Prog. Fractional Differ. Appl. 1, 73–85 (2015)

    Google Scholar 

  59. K.A. Abro, A. Atangana, Synchronization via fractal-fractional differential operators on two-mass torsional vibration system consisting of motor and roller. J. Comput. Nonlinear Dyn. (2021). https://doi.org/10.1115/1.4052189

  60. L. Ferrás, N. Ford, M. Morgado, M.S. Rebelo, J.M. Nobrega, Fractional Pennes’ bioheat equation: Theoretical and numerical studies. Fraction. Calc. Appl. Anal. 18(4), 1080–1106 (2015). https://doi.org/10.1515/fca-2015-0062

    Article  MathSciNet  MATH  Google Scholar 

  61. K. Grysa, A. Maciag, Trefftz method in solving the pennes’ and single-phase-lag heat conduction problems with perfusion in the skin. Int. J. Numer. Methods Heat Fluid Flow, 30(6), 3231–3246 (2019)

Download references

Acknowledgements

The author Kashif Ali Abro is highly thankful and grateful to Mehran university of Engineering and Technology, Jamshoro, Pakistan, for generous support and facilities of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Ali Abro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abro, K.A., Atangana, A. & Gomez-Aguilar, J.F. An analytic study of bioheat transfer Pennes model via modern non-integers differential techniques. Eur. Phys. J. Plus 136, 1144 (2021). https://doi.org/10.1140/epjp/s13360-021-02136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02136-x

Navigation