Skip to main content
Log in

Effect of Newtonian heating on two-phase fluctuating flow of dusty fluid: Poincaré–Lighthill perturbation technique

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This article deals with the two phase fluctuating flow of dusty fluid and heat transfer in the presence of electrically conducting dust particles induces a strong magnetic field. The flow is considered between two parallel non-conducting plates, one at rest and the other in the state of fluctuation. Heat transfers due to free convection and Newtonian heating condition (NHC). The flow is generated due to plate fluctuation. In the sequence to scrutinize methodical solutions, we have used the Poincaré–Lighthill perturbation technique (PLPT). Results are obtained and plotted in graphs. The effect of pertinent parameters on the base fluid velocity such as Grashof number, magnetic parameter, radiation parameter and dusty fluid parameter has been studied. It is noticed that the velocity of the base fluid increases with the decrease in magnetic field and the applied shear stress, i.e., decreases up to some extent but gradually increases for the large magnetic parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data in a data repository. [Authors’ comment: No data was needed to perform this research. This work is new and all the results are computed from the equations].

Abbreviations

u :

Velocity of the fluid \(\left( \frac{m}{s} \right)\)

v :

Velocity of the dust particle (\(m/s)\)

T :

Temperature of the fluid (\(K\)

T p :

Temperature of the dust particle (\(K)\)

ρ :

Fluid density \(\left( {\frac{Kg}{{m^{3} }}} \right)\)

υ:

Kinematic viscosity \(\left( {\frac{{m^{2} }}{s}} \right)\)

K 0 :

Stock’s resistance coefficient \(\left( {\frac{m}{{s^{2} }}} \right)\)

σ :

Electrical conductivity \(\left( \frac{S}{m} \right)\) S is Siemens.

B 0 :

Applied magnetic field \(\left( {\frac{Kg}{{s^{2} A}}} \right)\)

g :

Gravitational acceleration \(\left( {\frac{m}{{s^{2} }}} \right)\)

β T :

Coefficient of thermal expansion \(\left( \frac{1}{K} \right)\)

k :

Thermal conductivity of the base fluid \(\left( {\frac{w}{m \cdot K}} \right)\)

C s :

Specific heat capacity of the dust particle \(\left( {\frac{j}{Kg \cdot K}} \right)\)

m :

Average mass of the dust particle \(\left( {Kg} \right)\)

T :

Ambient temperature \(\left( K \right)\)

h s :

Heat transfer coefficient \( \left( \frac{1}{m} \right)\)

N :

Thermal radiation \(\left( j \right)\)

P e :

Peclet number

G r :

Grashof number

M :

Non-dimensional parameter

K 1 :

Dusty fluid parameter

K 2 :

Dusty fluid parameter

References

  1. O.D. Makinde, P.Y. Mhone, Heat transfer to MHD oscillatory flow in a channel filled with porous medium. Rom. J. Phys. 50(9/10), 931 (2005)

    Google Scholar 

  2. R.S. Rivlin, The relation between the flow of non-Newtonian fluids and turbulent Newtonian fluids. Q. Appl. Math. 15(2), 212–215 (1957)

    Article  MathSciNet  Google Scholar 

  3. K. Watanabe, Y. Udagawa, H. Udagawa, Drag reduction of a Newtonian fluid in a circular pipe with a highly water-repellent wall. J. Fluid Mech. 381, 225–238 (1999)

    Article  ADS  Google Scholar 

  4. Ouellette, Jennifer (2013). "An-Ti-Ci-Pa-Tion: The Physics of Dripping Honey". Scientific American.

  5. A. Aliseda, E.J. Hopfinger, J.C. Lasheras, D.M. Kremer, A. Berchielli, E.K. Connolly, Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling. Int. J. Multiph. Flow 34(2), 161–175 (2008)

    Article  Google Scholar 

  6. M. Hameed, S. Nadeem, Unsteady MHD flow of a non-Newtonian fluid on a porous plate. J. Math. Anal. Appl. 325(1), 724–733 (2007)

    Article  MathSciNet  Google Scholar 

  7. T. Fang, J. Zhang, Closed-form exact solutions of MHD viscous flow over a shrinking sheet. Commun. Nonlinear Sci. Numer. Simul. 14(7), 2853–2857 (2009)

    Article  ADS  Google Scholar 

  8. B. Raftari, A. Yildirim, The application of the homotopy perturbation method for MHD flows of UCM fluids above porous stretching sheets. Comput. Math. Appl. 59(10), 3328–3337 (2010)

    Article  MathSciNet  Google Scholar 

  9. P. Sharma, C.L. Varshney, Thermal dispersion effect on MHD flow of dusty gas and dust particles through hexagonal channel. Int. J. Heat Mass Transf. 46(13), 2511–2514 (2003)

    Article  Google Scholar 

  10. P.T. Manjunatha, B.J. Gireesha, B.C. Prasannakumara, Effect of radiation on flow and heat transfer of MHD dusty fluid over a stretching cylinder embedded in a porous medium in presence of heat source. Int. J. Appl. Comput. Math. 3(1), 293–310 (2017)

    Article  MathSciNet  Google Scholar 

  11. M. Turkyilmazoglu, Magnetohydrodynamic two-phase dusty fluid flow and heat model over deforming isothermal surfaces. Phys. Fluids 29(1), 013302 (2017)

    Article  ADS  Google Scholar 

  12. F. Ali, M. Bilal, M. Gohar, I. Khan, N.A. Sheikh, K.S. Nisar, A report on fluctuating free convection flow of heat absorbing viscoelastic dusty fluid past in a horizontal channel with MHD effect. Sci. Rep. 10(1), 1–15 (2020)

    Article  Google Scholar 

  13. Bernard, P., & Lippert, M. (2015). Nickel-cadmium and nickel-metal hydride battery energy storage. In Electrochemical energy storage for renewable sources and grid balancing (pp. 223–251). Elsevier

  14. Y. Wang, T. Hayat, Fluctuating flow of a Maxwell fluid past a porous plate with variable suction. Nonlinear Anal. Real World Appl. 9(4), 1269–1282 (2008)

    Article  MathSciNet  Google Scholar 

  15. J. Jung, R.W. Lyczkowski, C.B. Panchal, A. Hassanein, Multiphase hemodynamic simulation of pulsatile flow in a coronary artery. J. Biomech. 39(11), 2064–2073 (2006)

    Article  Google Scholar 

  16. M.R. Tek, Multiphase flow of water, oil, and natural gas through vertical flow strings. J. Petrol. Technol. 13(10), 1–029 (1961)

    Article  Google Scholar 

  17. Z. Gao, W. Dang, C. Mu, Y. Yang, S. Li, C. Grebogi, A novel multiplex network-based sensor information fusion model and its application to industrial multiphase flow system. IEEE Trans. Ind. Inf. 14(9), 3982–3988 (2017)

    Article  Google Scholar 

  18. C.H. Son, S.J. Park, An experimental study on heat transfer and pressure drop characteristics of carbon dioxide during gas cooling process in a horizontal tube. Int. J. Refrig. 29(4), 539–546 (2006)

    Article  Google Scholar 

  19. Y. Todo, M.A. Van Zeeland, A. Bierwage, W.W. Heidbrink, Multi-phase simulation of fast ion profile flattening due to Alfvén eigenmodes in a DIII-D experiment. Nucl. Fus. 54(10), 104012 (2014)

    Article  ADS  Google Scholar 

  20. S.L. Soo, Particulates and Continuum-Multiphase Fluid Dynamics: Multiphase Fluid Dynamics (CRC Press, Florida, 1989)

    MATH  Google Scholar 

  21. Wang, C. Y., & Cheng, P. (1997). Multiphase flow and heat transfer in porous media. In Advances in heat transfer (Vol. 30, pp. 93–196). Elsevier.

  22. M. Ma, J. Lu, G. Tryggvason, Using statistical learning to close two-fluid multiphase flow equations for bubbly flows in vertical channels. Int. J. Multiph. Flow 85, 336–347 (2016)

    Article  MathSciNet  Google Scholar 

  23. N. Brauner, D.M. Maron, Stability analysis of stratified liquid-liquid flow. Int. J. Multiph. Flow 18(1), 103–121 (1992)

    Article  Google Scholar 

  24. S.S. Ghadikolaei, K. Hosseinzadeh, D.D. Ganji, M. Hatami, Fe3O4–(CH2OH) 2 nanofluid analysis in a porous medium under the MHD radiative boundary layer and dusty fluid. J. Mol. Liq. 258, 172–185 (2018)

    Article  Google Scholar 

  25. W. Kvasnak, G. Ahmadi, R. Bayer, M. Gaynes, Experimental investigation of dust particle deposition in a turbulent channel flow. J. Aerosol Sci. 24(6), 795–815 (1993)

    Article  ADS  Google Scholar 

  26. P. Venkatesh, B.P. Kumara, Exact solutions of an unsteady conducting dusty fluid flow between non-torsional oscillaying plate and along wavy wall. J. Sci. Arts 13(1), 97 (2013)

    Google Scholar 

  27. R.T. Lahey Jr., D.A. Drew, The analysis of two-phase flow and heat transfer using a multidimensional, four fields, two-fluid model. Nucl. Eng. Des. 204(1–3), 29–44 (2001)

    Article  Google Scholar 

  28. F. Ali, M. Bilal, N.A. Sheikh, I. Khan, K.S. Nisar, Two-Phase fluctuating flow of dusty viscoelastic fluid between non-conducting rigid plates with heat transfer. IEEE Access 7, 123299–123306 (2019)

    Article  Google Scholar 

  29. B. Mahanthesh, B.J. Gireesha, Thermal Marangoni convection in two-phase flow of dusty Casson fluid. Results Phys. 8, 537–544 (2018)

    Article  ADS  Google Scholar 

  30. B.J. Gireesha, B. Mahanthesh, K.L. Krupalakshmi, Hall effect on two-phase radiated flow of magneto-dusty-nanoliquid with irregular heat generation/consumption. Results Phys. 7, 4340–4348 (2017)

    Article  ADS  Google Scholar 

  31. M. Turkyilmazoglu, Suspension of dust particles over a stretchable rotating disk and two-phase heat transfer. Int. J. Multiph. Flow 127, 103260 (2020)

    Article  MathSciNet  Google Scholar 

  32. B. Boissiere, R. Ansart, D. Gauthier, G. Flamant, M. Hemati, Experimental hydrodynamic study of gas-particle dense suspension upward flow for application as new heat transfer and storage fluid. Can. J. Chem. Eng. 93(2), 317–330 (2015)

    Article  Google Scholar 

  33. J.H. Merkin, Natural-convection boundary-layer flow on a vertical surface with Newtonian heating. Int. J. Heat Fluid Flow 15(5), 392–398 (1994)

    Article  Google Scholar 

  34. I. Pop, D. Lesnic, D.B. Ingham, Asymptotic solutions for the free convection boundary-layer flow along a vertical surface in a porous medium with Newtonian heating. Hybrid Methods Eng. 2(1), 10 (2000)

    Article  Google Scholar 

  35. A. Hussanan, M.I. Anwar, F. Ali, I. Khan, S. Shafie, Natural convection flows past an oscillating plate with Newtonian heating. Heat Transf. Res. 45(2), 119–135 (2014)

    Article  Google Scholar 

  36. D. Vieru, C. Fetecau, C. Fetecau, N. Nigar, Magnetohydrodynamic natural convection flow with Newtonian heating and mass diffusion over an infinite plate that applies shear stress to a viscous fluid. Zeitschrift für Naturforschung A 69(12), 714–724 (2014)

    Article  ADS  Google Scholar 

  37. D. Khan, A. Khan, I. Khan, F. Ali, ul Karim, F., & Tlili, I., Effects of the relative magnetic field, chemical reaction, heat generation, and Newtonian heating on convection flow of Casson fluid over a moving vertical plate embedded in a porous medium. Sci. Rep. 9(1), 1–18 (2019)

    Google Scholar 

  38. S.A. Shehzad, T. Hussain, T. Hayat, M. Ramzan, A. Alsaedi, Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation. J. Cent. South Univ. 22(1), 360–367 (2015)

    Article  Google Scholar 

  39. T. Hayat, G. Bashir, M. Waqas, A. Alsaedi, MHD flow of Jeffrey liquid due to a nonlinear radially stretched sheet in presence of Newtonian heating. Results Phys. 6, 817–823 (2016)

    Article  ADS  Google Scholar 

  40. Ali, F., & Sheikh, N. A. (2018). Introductory chapter: Fluid flow problems. In Fluid Flow Problems. IntechOpen.

  41. C. Comstock, The Poincaré-Lighthill perturbation technique and its generalizations. SIAM Rev. 14(3), 433–446 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IFP-2020-65).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Khan, D., Ali, G. et al. Effect of Newtonian heating on two-phase fluctuating flow of dusty fluid: Poincaré–Lighthill perturbation technique. Eur. Phys. J. Plus 136, 1142 (2021). https://doi.org/10.1140/epjp/s13360-021-02101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02101-8

Navigation