Skip to main content
Log in

Numerical study of axisymmetric magneto-gyrotactic bioconvection in non-Fourier tangent hyperbolic nano-functional reactive coating flow of a cylindrical body in porous media

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Modern functional nanomaterials coating processes feature an increasing range of intelligent properties including rheology, biological (bio-inspired) modifications, elaborate thermophysical behaviour and complex chemical reactions which are needed for the precise synthesis of bespoke designs. Such manufacturing flow processes are extremely complex and involve both heat and multiple mass transfer (species diffusion) phenomena. Intelligent nano-coatings are particularly attractive since they exploit magnetic nanoparticles which can be manipulated by external magnetic fields. Recently, Boeing Aerospace have explored the use of micro-organisms for intelligent aircraft coatings. Mathematical models provide an excellent analysis for elucidating the response characteristics of such coating dynamics processes. With this motivation, the present analysis is indented to develop a new mathematical model to examine the axisymmetric, magnetohydrodynamic, chemically reactive, gyrotactic bioconvection flow of a tangent hyperbolic nanofluid past a cylinder saturated with Darcy porous medium, as a model of smart-coating enrobing flow. The influence of Cattaneo–Christov heat flux (non-Fourier thermal relaxation parameter), thermophoresis and Brownian motion are taken into consideration. The steady-state, boundary layer, partial differential conservation equations are rendered dimensionless via appropriate transformations, and the subsequent nonlinear, coupled, system of governing equations is numerically solved by employing implicit Keller box method. The impact of various factors such as Hartmann magnetic number, Weissenberg viscoelastic parameter, Prandtl number, non-Fourier thermal relaxation parameter, thermophoresis, Brownian motion, micro-organisms concentration difference variable, chemical reaction, bioconvection Peclet number, Schmidt number and bio-convection Schmidt number on the flow, heat transfer, mass transfer, motile density, local friction factor, local heat transfer rate, local mass transfer rate and local microorganism density number wall gradient is visualized graphically. Validation with earlier studies is included. Further validation with a finite element method (FEM) code (SMART-FEM) is presented. Results reveal that the heat transfer upsurges for amplifying the Weissenberg number and Hartmann magnetic number. Microorganism concentration distribution of the non-Newtonian nanofluid coating diminishes for amplifying the bioconvection Schmidt number and Peclet number. Magnifying the power law index parameter reduces the momentum boundary layer thickness of tangent hyperbolic nanofluid, while there is an acceleration in the fluid flow near the surface of the cylinder. Local Sherwood number rises with higher values of homogenous destructive chemical reaction parameter. The computations provide a solid benchmark for further CFD modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. K.C. Chang, J.M. Yeh, Intelligent Coatings for Corrosion Control, (2015)

  2. M.D. Shamshuddin, S.R. Mishra, O. Anwar Beg, T.A. Beg, Ali Kadir, Heat Transf. (2020). https://doi.org/10.1002/htj.21963

    Article  Google Scholar 

  3. Intelligentmaterial.com/IMS’ Intelligent Material (2020)

  4. A.S. Butt, A. Ali, S. Munawar, Int. J. Exergy 13(1), 1 (2013)

    Article  Google Scholar 

  5. N. Saleem, S. Munawar, Int. J. Bio Math. 9(2), 1650027 (2016)

    Google Scholar 

  6. D.E. Weidner, J. Magn. Magn. Mater. 489, 165352 (2019)

    Article  Google Scholar 

  7. W. Chen, T. Long, Y.J. Guo, Z.A. Zhu, Y.P. Guo, J. Mater. Chem. B 12, 1653 (2014)

    Article  Google Scholar 

  8. T. Cheng, R. He, Q. Zhang, X. Zhan, F. Chen, J. Mater. Chem. A 3, 21637 (2015)

    Article  Google Scholar 

  9. F. Xia, W. Yue, J. Wang, C. Liu, F. Wang, Y. Li, Ceram. Int. A 41(9), 11445 (2015)

    Article  Google Scholar 

  10. S.H. Teh, I.I. Yaacob, IEEE Trans. Magn. 47(10), 4398 (2011)

    Article  ADS  Google Scholar 

  11. J. Halim, R. Abdel-karim, S. Raghy, M. Nabil, A. Waheed, J. Nanomater., (2012)

  12. T. Tang, Y. Fu, Coatings 10, 51 (2020)

    Article  Google Scholar 

  13. H. Wang, T. Chen, W. Cong, D. Liu, Coatings 9, 109 (2019)

    Article  Google Scholar 

  14. S. Vorobyev, E. Vishnyakova, M. Likhatski, A. Romanchenko, I. nemtsev, Y. Mikhlin, Nanomaterials 9(11), 1525 (2019)

    Article  Google Scholar 

  15. D. He, S. Grag, T.D. Waite, Langmuir 28, 10266 (2012)

  16. L. Feng, G. Gao, P. Huang, X. Wang, C. Zhang, J. Zhang, S. Guo, D. Cui, Nanoscale Res. Lett. 6, 551 (2011)

    Article  ADS  Google Scholar 

  17. L.E. Murr, Springer (USA, 2015)

  18. M. Kumar, Y. Ando, J. Nanosci. Nanotechnol. 10, 3739 (2010)

    Article  Google Scholar 

  19. ssnano.com/ (2020) [SkySpring Nanomaterials, Houston, Texas, USA]

  20. S.K. Das, S.U. Choi, W. Yu, T. Pradeep, Nanofluids: science and technology (Wiley, Hoboken, 2007)

    Book  Google Scholar 

  21. R. Jafari, L.F. Mobarakeh, M. Farzaneh, Nano Sci. Technol. Lett. 4, 369–374 (2012)

    Google Scholar 

  22. W. Jiang, L. SheN, K. Wang, Z. Wang, Z. Tian, Proc. IMechE- Part B J. Eng. Manuf. 234, 431 (2019)

    Article  Google Scholar 

  23. M. Tajbakhsh, O. Yaghbizadeh, M. Farhadi Nia, Proc. IMechE- Part E J. Process Mech. Eng. 233, 94 (2017)

    Article  Google Scholar 

  24. J. Buongiorno, ASME J. Heat Transf. 128, 240 (2006)

    Article  Google Scholar 

  25. J. Koo, NC State University (Raleigh, NC, USA, 2004)

    Google Scholar 

  26. J. Li, NC State University (Raleigh, NC, USA, 2008)

    Google Scholar 

  27. R.K. Tiwari, M.K. Das, Int. J. Heat Mass Transf. 50, 2002 (2007)

    Article  Google Scholar 

  28. O.A. Beg, A.S. Rao, N. Nagendra, C.H. Amanulla, M.S.N. Reddy, A. Kadir, J. Nanofluids 7, 1 (2018)

    Article  Google Scholar 

  29. N. Shukla, P. Rana, O.A. Beg, A.B. Singh, A. Kadir, Propuls Power Res. 8(2), 147–162 (2019)

    Article  Google Scholar 

  30. S. A. Gaffar, V. Ramachandra Prasad, O. Anwar Beg, Int. J. Appl. Comput. Math. 1, 651 (2015)

  31. M.Y. Malik, T. Salahuddin, A. Hussain, S. Bilal, J. Magn. Magn. Mater. 395, 271 (2015)

    Article  ADS  Google Scholar 

  32. K. Ganesh Kumar, B.J. Gireesha, M. R. Krishanamurthy, N. G. Rudraswamy, Results Phys. 7, 3031 (2017)

  33. T. Hayat, M. Shafque, A. Tanveer, A. Alsaedi, Int. J. Heat Mass Transf. 102, 54 (2016)

    Article  Google Scholar 

  34. S. A. Gaffar, V. R. Prasad, E. Keshava Reddy, O. Anwar Beg, Arab. J. Sci. Eng. 39, 8157 (2014)

  35. H.T. Basha, R. Sivaraj, V.R. Prasad, O. Anwar Beg, J. Therm. Anal. Calorim. 143(3), 2273–2289 (2020)

    Article  Google Scholar 

  36. S. A. Gaffar, V. Ramachandra Prasad, S. Keshava Reddy, O. Anwar Beg, J. Braz. Soc. Mech. Sci. Eng. 39, 101 (2017)

  37. P.R. Reddy, S. Abdul Gaffar, B.M.H. Khan, K. Venkatadri, O. Anwar Beg, Heat Transf. (2020). https://doi.org/10.1002/htj.22011

    Article  Google Scholar 

  38. L. Pawlowski, Second Edition, Wiley, New York, USA (2008)

  39. J. B. J. Fourier, Chez Firmin Didot, Paris (1822)

  40. C. Cattaneo, Atti del Seminario Matematico e Fisicodell‘Universita’ di Modena, 3, 83 (1948)

  41. C.I. Christov, Mech. Res. Commun. 36, 481–486 (2009)

    Article  Google Scholar 

  42. B. Straughan, Int. J. Heat Mass Transf. 53, 2808 (2010)

    Article  Google Scholar 

  43. B. Straughan, Int. J. Heat Mass Transf. 53, 95 (2010)

    Article  Google Scholar 

  44. S. Han, L. Zheng, C. Li, X. Zhang, Appl. Math. Lett. 38, 87 (2014)

    Article  MathSciNet  Google Scholar 

  45. S.R. Mishra, M. Shamshuddin, O. Anwar Beg, Ali Kadir, Heat Transf. 48(1), 435 (2019)

  46. V. Tibullo, V.A. Zampoli, Mech. Res. Commun. 38, 77 (2011)

    Article  Google Scholar 

  47. R. Mehmood, S. Rana, O. Anwar Beg, A. Kadir, J. Brazilian Soc. Mech Sci. Eng. (2018). https://doi.org/10.1007/s40430-018-1446-4

    Article  Google Scholar 

  48. J.A. Khan, M. Mustafa, T. Hayat, A. Alsaedi, PLoS One 10, e0137363 (2015)

    Article  Google Scholar 

  49. S.R. Mishra, M.D. Shamshuddin, O.A. Beg, A. Kadir, Arab. J. Sci. Eng. (2019). https://doi.org/10.1007/s13369-019-04019-x

    Article  Google Scholar 

  50. T. Hayat, M. Imtiaz, A. Alsaedi, S. Almezal, J. Magn. Magn. Mater. 401, 296 (2016)

    Article  ADS  Google Scholar 

  51. F. A. Elsayed, O. Anwar Beg, J. Mech. Med. Biol. 14, 3 (2014)

  52. H. Wager, Philos. Trans. R. Soc. Lond. B. 203, 333 (1911)

    ADS  Google Scholar 

  53. J.R. Platt, Science 133, 1766 (1961)

    Article  ADS  Google Scholar 

  54. T.J. Pedley, N.A. Hill, J.O. Kessler, J. Fluid Mech. 195, 223 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  55. A.V. Kuznetsov, Int. Comm. Heat Mass Transf. 32, 991 (2005)

    Article  Google Scholar 

  56. T.J. Pedley, J.O. Kessler, Ann. Rev. Fluid Mech. 24, 313 (1992)

    Article  ADS  Google Scholar 

  57. D.E. Weidner, Phys. Fluids 29, 052103 (2017)

    Article  ADS  Google Scholar 

  58. G. Janardhana Reddy, Bhaskerreddy Kethireddy, O. Anwar Beg, Int. J Mech. Sci. 140, 493 (2018)

    Article  Google Scholar 

  59. M. D. Shamshuddin, M. Ferdows, Rezwan, O. Anwar Beg, A. Kadir, Proceedings of the international conference on numerical heat transfer and fluid flow (NHTFF-2020), NIT Warangal, 17 (2020)

  60. J. Zueco, O.A. Beg, T.A. Beg, H.S. Takhar, J. Porous Media 12, 519 (2009)

    Article  Google Scholar 

  61. M.F. Md Basir, M.J. Uddin, A.I. Md Ismail, O.A. Beg, AIP Adv. 6, 055316 (2016)

    Article  ADS  Google Scholar 

  62. S. Siddiqa, M. Sulaiman, M.A. Hossain, S. Islam, R.S. Gorla, Int. J. Therm. Sci. 1(108), 244 (2016)

    Article  Google Scholar 

  63. F. T. Zohra, M.J. Uddin, A.I. Ismail, O. Anwar Beg, A. Kadir, Chin. J. Phys. 56, 432 (2018)

  64. P. Sudhagar, P.K. Kameswaran, B.R. Kumar, ASME J. Therm. Sci. Eng. Appl. 11, 4 (2019)

  65. M. Aneja, Sapna Sharma, S. Kuharat, O. Anwar Beg, Int. J. Modern Phys. B 33, 2050028 (2020)

    Article  Google Scholar 

  66. J.H. Merkin, ASME J. Heat Transf. 99(3), 453 (1977)

    Article  ADS  Google Scholar 

  67. R. Nazar, N. Amin, I. Pop, Proceeding of the 12th international conference (2002)

  68. J. N. Reddy, MacGraw-Hill, New York (1985)

  69. S. Rawat, R. Bhargava, Renu Bhargava, O. Anwar Beg, Proc. IMechE Part C J. Mech. Eng. Sci. 223, 2341 (2009)

    Article  Google Scholar 

  70. P. Rana, R. Bhargava, O. Anwar Beg, Comput. Math. Appl. 64, 2816 (2012)

    Article  MathSciNet  Google Scholar 

  71. O. Anwar Beg, Tasveer A. Beg, R. Bhargava, S. Rawat, D. Tripathi, J. Mech. Med. Biol. 12(4), 1250081.1 (2012)

    Google Scholar 

  72. P. Rana, R. Bhargava, O. Anwar Beg, Proc. IMECHE Part N J. Nanoeng. Nanosyst. 227, 77 (2013)

    Google Scholar 

  73. P. Rana, R. Bhargava, O. Anwar Beg, A. Kadir, Int. J. Appl. Comput. Math. 3(2), 1421 (2017)

    Article  MathSciNet  Google Scholar 

  74. O. Anwar Beg, R. Bhargava, S. Sharma, Ali Kadir, Tasveer A. Beg, M. Shamshuddin, Comput. Thermal Sci. 12(1), 79 (2020)

    Article  Google Scholar 

  75. N. Mukhin, I. Sokolova, D. Chigirev, L. Rudaja, G. Lebedeva, R. Kastro, M. Bolshakov, M.P. Schmidt, S. Hirsch, Coatings 10(3), 286 (2020)

    Article  Google Scholar 

  76. Thermal engineering.co.uk (SA Thermal Engineering- coatings) (2020)

  77. Boeing distribution.com Boeing Aerospace - coatings, Washington, USA (2020)

  78. P. Keblinski, Materials research society spring symposium, New York, USA, (2007)

  79. P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Int. J. Heat Mass Transf. 45(4), 855 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumaran, G., Sivaraj, R., Ramachandra Prasad, V. et al. Numerical study of axisymmetric magneto-gyrotactic bioconvection in non-Fourier tangent hyperbolic nano-functional reactive coating flow of a cylindrical body in porous media. Eur. Phys. J. Plus 136, 1107 (2021). https://doi.org/10.1140/epjp/s13360-021-02099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02099-z

Navigation