Skip to main content
Log in

Thermo-electrical vibration investigation of the circular FG nanoplates based on nonlocal higher-order plate theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the current research, the thermo-electrical vibration investigation of FG piezoelectric structures in a circular nanoplate is examined. Size-dependent nonlocal higher-order plate theory is dedicated to ponder the nonlocality. The mechanical properties of the system vary through the thickness based on the power law distribution. The nonlocal governing equations of motion and related boundary conditions are obtained according to Hamilton’s principle, whereby the differential quadrature (DQ) technique is employed as mathematical implement to acquire the responses of the eigenvalue problem in a discrete state. Several compositions of boundary situations including C–C and S–S are considered. The impacts of the diverse variables including nonlocality, FG index, temperature variations and external voltage are investigated on the vibration characteristics of the FG circular nanoplates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Ghahnavieh, S. Hosseini-Hashemi, K. Rajabi, A higher-order nonlocal strain gradient mass sensor based on vibrating heterogeneous magneto-electro-elastic nanoplate via third-order shear deformation theory. Eur. Phys. J. Plus 133(12), 1–21 (2018)

    Article  Google Scholar 

  2. B. Karami, D. Shahsavari, L. Li, M. Karami, M. Janghorban, Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory. Proc. Inst. Mech. Eng. Part C. J. Mech. Eng. Sci. 233(1), 287–301 (2019)

    Article  Google Scholar 

  3. F. Ebrahimi, A. Dabbagh, M.R. Barati, Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate. Eur. Phys. J. Plus 131(12), 1–18 (2016)

    Article  Google Scholar 

  4. A.G. Arani, R. Kolahchi, A.A.M. Barzoki, M.R. Mozdianfard, S.M.N. Farahani, Elastic foundation effect on nonlinear thermo-vibration of embedded double-layered orthotropic graphene sheets using differential quadrature method. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 227(4), 862–879 (2013)

    Article  Google Scholar 

  5. A. Haghshenas, A.G. Arani, Nonlocal vibration of a piezoelectric polymeric nanoplate carrying nanoparticle via Mindlin plate theory. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 228(5), 907–920 (2014)

    Article  Google Scholar 

  6. H. Liu, Q. Zhang, X. Yang, J. Ma, Size-dependent vibration of laminated composite nanoplate with piezo-magnetic face sheets. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01285-y

    Article  Google Scholar 

  7. J. Jiao, S.M. Ghoreishi, Z. Moradi, K. Oslub, Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01391-x

    Article  Google Scholar 

  8. E. Khanmirza, A. Jamalpoor, A. Kiani, Nano-scale mass sensor based on the vibration analysis of a magneto-electro-elastic nanoplate resting on a visco-Pasternak substrate. Eur. Phys. J. Plus 132(10), 1–16 (2017)

    Article  Google Scholar 

  9. S. Sahmani, A.M. Fattahi, N.A. Ahmed, Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with GPL. Eng. Comput. 36(4), 1559–1578 (2020)

    Article  Google Scholar 

  10. S. Sahmani, A.M. Fattahi, N.A. Ahmed, Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with GPL. Eng. Comput. 36(4), 1559–1578 (2020). https://doi.org/10.1007/s00366-019-00782-5

    Article  Google Scholar 

  11. F. Ebrahimi, M.R. Barati, Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment. J. Vib. Control 24(3), 549–564 (2018)

    Article  MathSciNet  Google Scholar 

  12. P. Bhatia, S.S. Verma, M.M. Sinha, Size-dependent optical response of magneto-plasmonic core-shell nanoparticles. Adv. Nano Res. 1(1), 1–13 (2018)

    Article  Google Scholar 

  13. B. Karami, S. Karami, Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials. Adv Nano Res 7, 51–61 (2019)

    Google Scholar 

  14. I. Bensaid, A. Bekhadda, B. Kerboua, Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory. Adv. Nano Res. 6(3), 279 (2018)

    Google Scholar 

  15. A.A. Jandaghian, O. Rahmani, Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation. Smart Mater. Struct. 25(3), 035023 (2016)

    Article  ADS  Google Scholar 

  16. V. Ondra, B. Titurus, Free vibration and stability analysis of a cantilever beam axially loaded by an intermittently attached tendon. Mech. Syst. Signal Process. 158, 107739 (2021)

    Article  Google Scholar 

  17. A. Moslemi, S.E. Khadem, M. Khazaee, A. Davarpanah, Nonlinear vibration and dynamic stability analysis of an axially moving beam with a nonlinear energy sink. Nonlinear Dyn (2021). https://doi.org/10.1007/s11071-021-06389-0

    Article  Google Scholar 

  18. I. Esen, A.A. Abdelrhmaan, M.A. Eltaher, Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01389-5

    Article  Google Scholar 

  19. Q. Chen, S. Zheng, Z. Li, C. Zeng, Size-dependent free vibration analysis of functionally graded porous piezoelectric sandwich nanobeam reinforced with graphene platelets with consideration of flexoelectric effect. Smart Mater. Struct. 30(3), 035008 (2021)

    Article  ADS  Google Scholar 

  20. P. Talebizadehsardari, H. Salehipour, D. Shahgholian-Ghahfarokhi, A. Shahsavar, M. Karimi, Free vibration analysis of the macro-micro-nano plates and shells made of a material with functionally graded porosity: A closed-form solution. Mech. Based Design Struct Mach (2020). https://doi.org/10.1080/15397734.2020.1744002

    Article  Google Scholar 

  21. M. Mahinzare, M.J. Alipour, S.A. Sadatsakkak, M. Ghadiri, A nonlocal strain gradient theory for dynamic modeling of a rotary thermo piezo electrically actuated nano FG circular plate. Mech. Syst. Signal Process. 115, 323–337 (2019)

    Article  ADS  Google Scholar 

  22. L.K. Hoa, P.V. Vinh, N.D. Duc, N.T. Trung, L.T. Son, D.V. Thom, Bending and free vibration analyses of functionally graded material nanoplates via a novel nonlocal single variable shear deformation plate theory. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2020). https://doi.org/10.1177/0954406220964522

    Article  Google Scholar 

  23. I. Katili, T. Syahril, A.M. Katili, Static and free vibration analysis of FGM beam based on unified and integrated of Timoshenko’s theory. Compos. Struct. 242, 112130 (2020)

    Article  Google Scholar 

  24. P. Talebizadehsardari, A. Eyvazian, M. Asmael, B. Karami, D. Shahsavari, R.B. Mahani, Static bending analysis of functionally graded polymer composite curved beams reinforced with carbon nanotubes. Thin-Walled Struct. 157, 107139 (2020)

    Article  Google Scholar 

  25. Y. Cao, M. Khorami, S. Baharom, H. Assilzadeh, M.H. Dindarloo, The effects of multi-directional functionally graded materials on the natural frequency of the doubly-curved nanoshells. Compos. Struct. 258, 113403 (2021)

    Article  Google Scholar 

  26. H. Razavi, A. Faramarzi Babadi, Y. Tadi Beni, Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory. Compos. Struct. 160, 1299–1309 (2016)

    Article  Google Scholar 

  27. D. Van Dung, L.K. Hoa, Nonlinear buckling and post-buckling analysis of eccentrically stiffened functionally graded circular cylindrical shells under external pressure. Thin-Walled Struct. 63, 117–124 (2013)

    Article  Google Scholar 

  28. M. Janghorban, A. Zare, Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method. Phys. E Low Dimens. Syst. Nanostruct. 43, 1602–1604 (2011)

    Article  ADS  Google Scholar 

  29. K.M. Liew, C.M. Wang, Y. Xiang, S. Kitipornchai, Vibration of Mindlin Plates (Elsevier, 1998)

    MATH  Google Scholar 

  30. S. Hosseini-Hashemi, M. Bedroud, R. Nazemnezhad, An exact analytical solution for free vibration of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity. Compos. Struct. 103, 108–118 (2013)

    Article  Google Scholar 

  31. T. Irie, G. Yamada, S. Aomura, Natural frequencies of Mindlin circular plates.J. Appl. Mech. 47, 652–655 (1980)

    Article  Google Scholar 

Download references

Acknowledgements

Inner Mongolia Department of Education Science Research Program (NJZY21428).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lina Liu or John Smitt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Smitt, J. Thermo-electrical vibration investigation of the circular FG nanoplates based on nonlocal higher-order plate theory. Eur. Phys. J. Plus 136, 1044 (2021). https://doi.org/10.1140/epjp/s13360-021-01966-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01966-z

Navigation