Skip to main content

Advertisement

Log in

Novel way to construct spatially localized finite energy structures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we introduce a procedure to find localized structures with finite energy. We start dealing with global monopoles, and add a new contribution to the potential of the scalar fields, to balance the contribution of the angular gradients of the fields which lead to a slow falloff in the energy density. Within the first-order formalism, first-order equations that are compatible with the equations of motion are obtained, and the stability under small fluctuations is investigated. We then include another set of scalar fields and study how it contributes to change the profile of the localized structure. We also study how these configurations modify the electric properties of a system with a single-point charge, with generalized electric permittivity controlled by scalar fields. In this new model, in particular, we show that depending on the specific modification of the electric properties of the medium, the electric field may engender the unusual behavior of pointing toward a positive charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.W.B. Kibble, J. Phys. A 9, 1387 (1976)

    Article  ADS  Google Scholar 

  2. A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, Cambridge, 1994)

    MATH  Google Scholar 

  3. N. Manton, P. Sutcliffe, Topological Solitons (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  4. M. Barriola, A. Vilenkin, Phys. Rev. Lett 63, 341 (1989)

    Article  ADS  Google Scholar 

  5. G. t Hooft, Nucl. Phys. B 79, 276 (1974)

  6. A.M. Polyakov, JETP Lett. 20, 194 (1974)

    ADS  Google Scholar 

  7. M.K. Prasad, C.M. Sommerfield, Phys. Rev. Lett. 35, 760 (1975)

    Article  ADS  Google Scholar 

  8. E.B. Bogomol‘nyi, Sov. J. Nucl. Phys. 24, 449 (1976)

  9. A.S. Goldhaber, Phys. Rev. Lett. 63, 2158 (1989)

    Article  ADS  Google Scholar 

  10. S.H. Rhie, D.P. Bennett, Phys. Rev. Lett. 67, 1173 (1991)

    Article  ADS  Google Scholar 

  11. L. Perivolaropoulos, Nucl. Phys. B 375, 665 (1992)

    Article  ADS  Google Scholar 

  12. A. Achucarro, J. Urrestilla, Phys. Rev. Lett. 85, 3091 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. D.P. Bennett, S.H. Rhie, Phys. Rev. Lett. 65, 1709 (1990)

    Article  ADS  Google Scholar 

  14. D. Harari, C. Lousto, Phys. Rev. D 42, 2626 (1990)

    Article  ADS  Google Scholar 

  15. I. Cho, A. Vilenkin, Phys. Rev. D 56, 7621 (1997)

    Article  ADS  Google Scholar 

  16. U. Nucamendi, M. Salgado, D. Sudarsky, Phys. Rev. Lett. 84, 3037 (2000)

    Article  ADS  Google Scholar 

  17. A. Marunovic, T. Prokopec, JCAP 04, 052 (2016)

    Article  ADS  Google Scholar 

  18. A. Marunovic, T. Prokopec, Phys. Lett. B 756, 268 (2016)

    Article  ADS  Google Scholar 

  19. N.E. Mavromatos, S. Sarkar, Phys. Rev. D 95, 104025 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. J.R. Nascimento, G.J. Olmo, P.J. Porfirio, A.Y. Petrov, A.R. Soares, Phys. Rev. D 99, 064053 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Ono, A. Ishihara, H. Asada, Phys. Rev. D 99, 124030 (2019)

    Article  ADS  Google Scholar 

  22. D. Bazeia, M.A. Marques, R. Menezes, Eur. Phys. J. C 81, 94 (2021)

    Article  ADS  Google Scholar 

  23. D. Bazeia, J. Menezes, R. Menezes, Phys. Rev. Lett. 91, 241601 (2003)

    Article  ADS  Google Scholar 

  24. T. Vachaspati, Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  25. G.T. Horowitz, J.E. Santos, D. Tong, JHEP 07, 168 (2012)

    Article  ADS  Google Scholar 

  26. D. Vegh, Holography without translational invariance. arXiv:1301.0537

  27. P.F. Arndt, T. Heinzel, V. Rittenberg, J. Phys A 31, L45 (1998)

    Article  ADS  Google Scholar 

  28. A. Hook, S. Kachru, G. Torroba, JHEP 1301, 004 (2013)

    Article  Google Scholar 

  29. D. Tong, K. Wong, JHEP 1401, 090 (2014)

    Article  ADS  Google Scholar 

  30. J. Ashcroft, S. Krusch, Phys. Rev. D 101, 025004 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  31. C. Adam, A. Wereszczyński, Phys. Rev. D 98, 116001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  32. C. Adam, K. Oles, T. Romanczukiewicz, A. Wereszczynski, Phys. Rev. Lett. 122, 241601 (2019)

    Article  ADS  Google Scholar 

  33. N.S. Manton, K. Oleś, A. Wereszczyński, JHEP 1910, 086 (2019)

    Article  ADS  Google Scholar 

  34. D. Bazeia, M.A. Marques, and Gonzalo J. Olmo, Phys. Rev. D 98, 025017 (2018)

  35. G. Arcadi, A. Djouadi, M. Raidal, Phys. Rep. 842, 1 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  36. D. Bazeia, M.J. dos Santos, R.F. Ribeiro, Phys. Lett. A 208, 84 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  37. D. Bazeia, F.A. Brito, Phys. Rev. D 61, 105019 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Alonso Izquierdo, M. A. Gonzalez Leon, and J. Mateos Guilarte, Phys. Rev. D 65, 085012 (2002)

  39. D. Bazeia, M.A. Liao, M.A. Marques, Eur. Phys. J Plus 135, 383 (2020)

    Article  Google Scholar 

  40. E. Babaev, J. Jäykkä, M. Speight, Phys. Rev. Lett. 103, 237002 (2009)

    Article  ADS  Google Scholar 

  41. S. Ghosh et al., Nature Phys. 17, 199 (2021)

    Article  ADS  Google Scholar 

  42. D. Bazeia, M.A. Marques, R. Menezes, Phys. Rev. D 98, 065003 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  43. E. Witten, Nucl. Phys. B 249, 557 (1985)

    Article  ADS  Google Scholar 

  44. M. Shifman, Phys. Rev. D 87, 025025 (2013)

    Article  ADS  Google Scholar 

  45. P. Arias, F.A. Schaposnik, JHEP 1412, 011 (2014)

    Article  ADS  Google Scholar 

  46. P. Arias, E. Ireson, C. Núñez, F. Schaposnik, JHEP 1502, 156 (2015)

    Article  ADS  Google Scholar 

  47. D. Bazeia, M.A. Marques, R. Menezes, Phys. Rev. D 97, 105024 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  48. C. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42 (2008)

    Article  ADS  Google Scholar 

  49. T. Fennell et al., Science 326, 415 (2009)

    Article  ADS  Google Scholar 

  50. S. H. Skjærvø, C. H. Marrows, R. L. Stamps, and L. J. Heyderman, Nature Reviews Physics 2, 13 (2020)

  51. J.R. Morris, Phys. Rev. D 104, 016013 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is supported by the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), grant No. 88882.440276/2019-01 (MP), by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grants Nos. 404913/2018-0 (DB) and 303469/2019-6 (DB), and by Paraiba State Research Foundation (FAPESQ-PB) grant No. 0015/2019

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bazeia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazeia, D., Marques, M.A. & Paganelly, M. Novel way to construct spatially localized finite energy structures. Eur. Phys. J. Plus 136, 990 (2021). https://doi.org/10.1140/epjp/s13360-021-01953-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01953-4

Navigation