Skip to main content
Log in

High-precision measurement of tiny Doppler frequency shifts based on quantum weak measurement with energy recycling

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

It is of great significance to measure tiny Doppler frequency shifts precisely, for its importance in velocity measurement. However, the precision of classical measurement schemes for tiny Doppler frequency shifts is restricted by the shot noise limit. The emergence of quantum weak measurement can significantly reduce technical noise compared with classical measurements. Here, a scheme to realize tiny Doppler measurement by using quantum weak measurement technology is proposed. This scheme realizes the coupling of the polarization state and the transversal position state of a beam and then post-selects the polarization state. Finally, the tiny Doppler frequency shifts are amplified. At the same time, the energy recycling technology is incorporated to increase the best measurement precision by 1000 times compared with the classical measurements. Considering the loss in the energy recycling cavity, we draw the following conclusion: When the loss rate in the cavity does not exceed 20%, the precision of our scheme can be twice of the shot noise limit of the classical measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data and the data will not be deposited. [Authors' comment: This is a theoretical study and no experimental data.]

References

  1. Y. Aharonov, D.Z. Albert, L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  2. J. Dressel, M. Malik, F.M. Miatto, A.N. Jordan, R.W. Boyd, Colloquium: Understanding Quantum Weak Values: Basics and Applications. Rev. of Mod. Phys. 86, 307 (2013)

    Article  ADS  Google Scholar 

  3. H.F. Hofmann, Complete, characterization of post-selected quantum statistics using weak measurement tomography. Phys. Rev. A 81, 15780–15787 (2010)

    Article  Google Scholar 

  4. Y. Aharonov, A. Botero, Quantum averages of weak values. Phys. Rev. A 72, 762–776 (2005)

    Article  Google Scholar 

  5. Y. Kedem, Using technical noise to increase the signal-to-noise ratio of measurements via imaginary weak values. Phys. Rev. A 85, 121–125 (2012)

    Article  Google Scholar 

  6. N. Brunner, C. Simon, Measuring small longitudinal phase shifts: weak measurements or standard interferometry? Phys. Rev. Lett. 105, 010405 (2010)

    Article  ADS  Google Scholar 

  7. O. Hosten, P. Kwiat, Observation of the spin hall effect of light via weak measurements. Science 319, 787–790 (2008)

    Article  ADS  Google Scholar 

  8. P. Piyush, M.S. Giridhar, G.R. Jayanth, A high bandwidth three-axis out-of-plane motion measurement system based on optical beam deflection. Rev. Sci. Instrum. 89, 035003 (2018)

    Article  ADS  Google Scholar 

  9. V. Trivedi, M. Joglekar, S. Mahajan et al., Portable device based on beam deflection for refractive index mapping and diffusion coefficient measurement. Opt. Eng. 58, 014101 (2019)

    Article  ADS  Google Scholar 

  10. P.B. Dixon, D.J. Starling, A.N. Jordan et al., Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification. Phys. Rev. Lett. 102, 173601 (2009)

    Article  ADS  Google Scholar 

  11. S.J. Park, H.J. Kim, J.W. Noh, Weak value measurement of an optical beam deflection in image rotating sagnac interferometer. J. Opt. Soc. Korea 16, 277–281 (2012)

    Article  Google Scholar 

  12. J.M. Hogan, J. Hammer, S.-W. Chiow, S. Diclcerson, D.M.S. Johnson, T. Kovachy, A. Sugarbaker, M.A. Kasevich, Precision angle sensor using an optical lever inside a Sagnac interferometer. Opt. Lett. 36, 1698 (2011)

    Article  ADS  Google Scholar 

  13. M.D. Turner, C.A. Hagedorn, S. Schlanvninger, J.H. Gundlach, Picoradian deflection measurement with an interferometric, quasi-autocollimator using weak value amplification. Opt. Lett. 36, 1479 (2011)

    Article  ADS  Google Scholar 

  14. G.I. Viza, Martínez-Rincón, Julián, Howland G A, et al, “Weak-values technique for velocity measurements.” Opt. Lett. 38, 2949–2952 (2013)

    Article  ADS  Google Scholar 

  15. N. Striibi, C. Simon, Measuring small longitudinal phase shifts: weak measurements or standard interferometry? Phys. Rev: Lett. 105, 010405 (2010)

    Google Scholar 

  16. G. Brunner, C. Bruder, Measuring Ultrasmall Time Delays of Light by Joint Weak Measurements. Phys. Rev. Lett. 110, 083605 (2013)

    Article  ADS  Google Scholar 

  17. A. Feizpour, X. Xing, A.M. Steinberg, Amplifying single-photon nonlinearity using weak measurement. Phys. Rev. Lett. 107, 133603 (2011)

    Article  ADS  Google Scholar 

  18. X.Y. Xu, Y. Kedem, K. Sun et al., Phase estimation with weak measurement using a white light source. Phys. Rev. Lett. 111, 033604 (2013)

    Article  ADS  Google Scholar 

  19. G. Jayaswal, G. Mistura, M. Merano, Observing angular deviations in light-beam reflection via weak measurements. Opt. Lett. 39, 6257 (2014)

    Article  ADS  Google Scholar 

  20. Y.T. Wang, J.S. Tang, G. Hu et al., Experimental demonstration of higher precision weak-value-based metrology using power recycling. Phys. Rev. Let. 117, 230801 (2016)

    Article  ADS  Google Scholar 

  21. S. Wu, Y. Li, Weak measurements beyond the Aharonov-Albert-Vaidman formalism. Phys. Rev. A 83, 052106 (2011)

    Article  ADS  Google Scholar 

  22. O. Pinel, J. Fade, D. Braun, P. Jian, N. Treps, C. Fabre, Ultimate sensitivity of precision measurements with intense Gaussian quantum light: A multi-modal approach. Phys. Rev. A 85, 1–4 (2012)

    Article  Google Scholar 

  23. S. Pang, J. Alonso, T.A. Brun et al., Protecting weak measurements against systematic errors. Phys. Rev. A 94, 012329 (2016)

    Article  ADS  Google Scholar 

  24. Y. Qin, Y. Li, H. He, Q. Gong, Measurement of spin Hall effect of reflected light. Opt. Lett. 34, 2551 (2009)

    Article  ADS  Google Scholar 

  25. Y. Qin, Y. Li, X. Feng, Y.-F. Xiao, H. Yang, Q. Gong, Observation of the in-plane spin separation of light. Opt. Express 19, 9636 (2011)

    Article  ADS  Google Scholar 

  26. G. Jayaswal, G. Mistura, M. Merano, Weak measurement of the Goos-Hänchen shift. Opt. Lett. 38, 1232 (2013)

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by National Natural Science Foundation of China (62075049) and (61701139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijing Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this article.

Appendix

Appendix

In this part, we give the formula derivation process of the measurement precision and signal-to-noise ratio of the split detector.

According to the quantization theory of electromagnetic field and the related theory of split detection, the electromagnetic field can be expanded under a set of orthogonal basis vectors. The expression of the positive frequency part of the electromagnetic field is

$$ \hat{\varepsilon }^{\left( + \right)} \left( x \right) = i\left( {\frac{\hbar \omega }{{2\varepsilon_{0} cT}}} \right)^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} \sum\limits_{n} {\hat{a}_{n} u_{n} } \left( x \right) $$
(7)

In the above formula, \(\omega\) is the frequency of the electromagnetic field, c is the speed of light, T is the detection integration time, \(\varepsilon_{0}\) is the permittivity of free space, \(\hat{a}_{n}\) is the annihilation operator of the nth-order mode, and \(u_{n} \left( x \right)\) is the n-order Hermite Gaussian mode. After linearizing the annihilation operator, we can get that only the average value of the n-order Hermite Gaussian mode is not 0, and then, when there is a transversal displacement \(d\), the positive frequency part of the signal light can be written as

$$ \hat{\varepsilon }^{ + } \left( x \right) = i\sqrt {\frac{\hbar \omega }{{2\varepsilon_{0} cT}}} \left[ {\left( {\sqrt N + \delta \hat{a}_{0} } \right)u_{0} \left( {x - d} \right) + \sum\limits_{n \ge 1}^{\infty } {\delta \hat{a}_{n} u_{n} \left( {x - d} \right)} } \right] $$
(8)

The laser beam is incident on the split detector, and the split detector needs to subtract the photocurrent measured by the two parts to obtain the difference in the photon number as

$$ \hat{n}_{ - } = \frac{{2\varepsilon_{0} cT}}{\hbar \omega }\int_{ - \infty }^{0} {\left( {\hat{\varepsilon }^{ + } \left( x \right)} \right)}^{ + } \left( {\hat{\varepsilon }^{ + } \left( x \right)} \right)dx - \int_{0}^{\infty } {\left( {\hat{\varepsilon }^{ + } \left( x \right)} \right)}^{ + } \left( {\hat{\varepsilon }^{ + } \left( x \right)} \right)dx $$
(9)

Taking Eq. (8) into Eq. (9) and omitting higher-order terms, we get

$$ \hat{n}_{ - } = \sqrt N \left( {d \times 2\sqrt N {{\sqrt {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} } \mathord{\left/ {\vphantom {{\sqrt {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} } {w_{0} }}} \right. \kern-\nulldelimiterspace} {w_{0} }} + \delta \hat{X}} \right) $$
(10)

Then, the signal-to-noise ratio satisfies \({\text{SNR}} = \left( {{{d\sqrt {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} 2\sqrt N } \mathord{\left/ {\vphantom {{d\sqrt {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} 2\sqrt N } {\left( {w_{0} \delta \hat{X}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {w_{0} \delta \hat{X}} \right)}}} \right)^{2}\).

For coherent light, \(\langle {\delta^{2} \hat{X}} \rangle = 1\),

$$ SNR = \frac{2}{\pi }\left( {\frac{2\sqrt N }{{w_{0} }}\Delta d} \right)^{2} $$
(11)

When SNR = 1, we can get the error formula of the displacement measurement

$$ \Delta d = \sqrt {\frac{\pi }{2}} \frac{{w_{0} }}{2\sqrt N } $$
(12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, Z. & Zhao, Y. High-precision measurement of tiny Doppler frequency shifts based on quantum weak measurement with energy recycling. Eur. Phys. J. Plus 136, 878 (2021). https://doi.org/10.1140/epjp/s13360-021-01883-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01883-1

Navigation