Skip to main content

Advertisement

Log in

A study on the dielectric non-Debye relaxation and ac and dc conductivity characteristics in nanostructured film of 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphyrin

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Porphyrin compounds have gained significant attention and proposed technical applications, including gas sensors and optoelectronic systems. One of them is 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphyrin (TTBTP) which is a highly structured organic semiconductor in thin films. Thin TTBTP films have been produced using the vacuum thermal evaporation technique. Testing for X-ray diffraction reveals that TTBTP films are nanostructured, with an average grain size of 56 nm. The conduct against frequency (40 Hz–5 MHz) and temperature (303–373 K) of the complex dielectric constant was investigated. Further, the relationship between the complex electric module and the frequency at different temperature values has been discussed. The relaxation activation energy has been calculated as 0.156 eV, and the relaxation process is defined as non-Debye for TTBTP film. Jonscher's formalism clarified the action of conductivity in the higher frequency range. Within the TTBTP film, the transfer of carrier charge was controlled by the corresponding correlated barrier hopping model. Moreover, the obtained rise of frequency indicates a decrease in the activation energy values of AC conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1:
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.M. Kuzmin, S.A. Chulovskaya, V.I. Parfenyuk, Structures and properties of porphyrin-based film materials part I. The films obtained via vapor-assisted methods, Adv. Colloid Interf. Sci. 253, 23–34 (2018)

  2. Y. Chen, G. Li, R.K. Pandey, Synthesis of bacteriochlorins and their potential utility in photodynamic therapy (PDT). Curr. Org. Chem. 8, 1105–1134 (2004)

    Article  Google Scholar 

  3. C. Di Natale, R. Paolesse, M. Burgio, E. Martinelli, G. Pennazza, A. D’Amico, Application of metalloporphyrins-based gas and liquid sensor arrays to the analysis of red wine. Anal. Chim. Acta 513, 49–56 (2004)

    Article  Google Scholar 

  4. P.F. Teng, T.S. Lai, H.L. Kwong, C.M. Che, Asymmetric inter-and intramolecular cyclopropanations of alkenes catalyzed by rhodium D 4-porphyrin: a comparison of rhodium-and ruthenium-centred catalysts. Tet. Asymm. 14, 837–844 (2003)

    Article  Google Scholar 

  5. H. Imahori, Porphyrin–fullerene linked systems as artificial photosynthetic mimics. Org. Biomol. Chem. 2, 1425–1433 (2004)

    Article  Google Scholar 

  6. S.E. Al Garni, A.A.A.Darwish, Photovoltaic performance of TCVA-InSe hybrid solar cells based on nanostructure films. Sol. Energy Mater. Sol. Cells, 160, 335–339 (2017)

  7. P. Kumar, A.K. Sharma, B.P. Singh, T.P. Sinha, N.K. Singh, Dielectric relaxation in complex perovskite oxide Sr(Gd0.5Nb0.5)O3. Mater. Sci. Appl. 3, 369 (2012)

  8. J.H. Ahn, J.U. Lee, T.W. Kim, Impedance characteristics of ITO/Alq 3/Al organic light-emitting diodes depending on temperature. Curr. Appl. Phys. 7, 509–512 (2007)

    Article  ADS  Google Scholar 

  9. M.M. El-Nahass, A.A. Atta, E.F.M. El-Zaidia, A.A.M. Farag, A.H. Ammar, Electrical conductivity and dielectric measurements of CoMTPP. Mater. Chem. Phys. 143, 490–494 (2014)

    Article  Google Scholar 

  10. M.M. El-Nahass, A.A.M. Farag, F.S.H. Abu-Samaha, Eman Elesh, Temperature and frequency dependencies of AC and dielectric characterizations of copper tetraphenyl porphyrin thin films. Vacuum 99, 153–159 (2014)

    Article  ADS  Google Scholar 

  11. M.S. Meikhail, A.H. Oraby, M.M. El-Nahass, H.M. Zeyada, A.A. Al-Muntaser, Electrical conduction mechanism and dielectric characterization of MnTPPCl thin films. Phys. B 539, 1–7 (2018)

    Article  ADS  Google Scholar 

  12. Ameen A. Al-Zubaidi, Amel Abdallah Ahmed Elfaki, A.A.A. Darwish, Influence of film thickness on structural and optical properties of 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine nanostructure thin films for optical applications. J. Mol. Struct. 1218, 128499 (2020)

  13. A.A.M. Farag, G.F. Salem, E.A.A. El-Shazly, O.W. Guirguis, Optical characterizations and dielectric performance of 5,10,15,20-Tetrakis(pentafluorophenyl)-21H,23H-porphine palladium(II) for photodetector applications. Mater. Chem. Phys. 258, 123989 (2021)

  14. M.M. El-Nahass, H.M. Zeyada, K.F. Abd-El-Rahman, A.A.A. Darwish, Structural characterization and electrical properties of nanostructured 4-tricyanovinyl-N, N-diethylaniline thin films. Eur. Phys. J. Appl. Phys. 62, 10202 (2013)

    Article  ADS  Google Scholar 

  15. R.P. Jebin, T. Suthan, N.P. Rajesh, G. Vinitha, Growth and characterization of organic material 3,4,5-trimethoxybenzaldehyde single crystal for optical applications. Opt. Laser Technol. 115, 500–507 (2019)

    Article  ADS  Google Scholar 

  16. I.S. Yahia, N.A. Hegab, A.M. Shakra, A.M. AL-Ribaty, Conduction mechanism and the dielectric relaxation process of a-Se75Te25-xGax (x = 0, 5, 10 and 15 at wt %) chalcogenide glasses. Phys. B 407, 2476–2485 (2012)

  17. J.M. Stevels, in Flugge. Handbuch der Physik. (Springer, Berlin, 1975).

  18. S.I. Qashou, A.A.A. Darwish, M. Rashad, Z. Khattarid, AC electrical conductivity and dielectric relaxation studies on n-type organic thin films of N, N′-Dimethyl-3,4,9,10-perylenedicarboximide (DMPDC). Phys. B 525, 159–163 (2017)

    Article  ADS  Google Scholar 

  19. M. Prabu, S. Selvasekarapandian, Dielectric and modulus studies of LiNiPO4. Mater. Chem. Phys. 134, 366–370 (2012)

    Article  Google Scholar 

  20. V. Thakur, A. Singh, A. Awasthi, L. Singh, Temperature-dependent electrical transport characteristics of BaTiO3 modified lithium borate glasses, AIP Adv. 5, 087110 (2015).

  21. T.A. Abdel-Baset, A. Hassen, Dielectric relaxation analysis and Ac conductivity of polyvinyl alcohol/polyacrylonitrile film. Phys. B 499, 24–28 (2016)

    Article  ADS  Google Scholar 

  22. M.M. El-Nahass, E.F.M. El-Zaidia, A.A.A. Darwish, G.F. Salem, Dielectric relaxation behavior and ac electrical conductivity study of 2-(1,2-dihydro-7-methyl-2-oxoquinoline-5-yl) malononitrile (DMOQMN). J. Electron. Mater. 46, 1093–1099 (2017)

    Article  ADS  Google Scholar 

  23. S. Elliott, Temperature dependence of ac conductivity of chalcogenide glasses. Phil. Mag. B 37, 553–560 (1978)

    Article  ADS  Google Scholar 

  24. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics Press, London, 1996)

    Google Scholar 

  25. R.H. Chen, R.Y. Chang, S.C. Shern, Dielectric and AC ionic conductivity investigations in K3H (SeO4)2 single crystal. J. Phys. Chem. Solids 63, 2069–2077 (2002)

    Article  ADS  Google Scholar 

  26. A.A.A. Darwish, E.F.M. El-Zaidia, M.M. El-Nahass, T.A. Hanafy, A.A. Al-Zubaidi, Dielectric and electrical conductivity studies of bulk lead (II) oxide (PbO). J. Alloys Compd. 589, 393–398 (2014)

    Article  Google Scholar 

  27. A.K. Jonscher, The “universal” dielectric response. Nature 267, 673–679 (1977)

    Article  ADS  Google Scholar 

  28. S.R. Elliott, Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987)

    Article  ADS  Google Scholar 

  29. S.I. Qashou, A.A.A. Darwish, M. Rashad, Z. , Khattari, AC electrical conductivity and dielectric relaxation studies in n-type organic thin films of N, N′-Dimethyl-3,4,9,10-perylenedicarboximide (DMPDC). Phys. B 525, 159–163 (2017)

    Article  ADS  Google Scholar 

  30. Saleem I. Qashou, A. A. A. Darwish, The effect of planar atomic configuration in the enhancement of AC conductivity and dielectric characterization of bisbenzimidazo[2,1-a:2′,1′-a′]anthra[2,1,9-def:6,5,10-d′e′f′]diisoquinoline-10,21-dione7 (BI-diisoQ) thin film. J. Mater. Sci. Mater. Electron, 30, 13024–13032 (2019)

  31. V.K. Bahatnagar, K.L. Bhatiam, Frequency-dependent electrical transport in bismuth-modified amorphous germanium sulfide semiconductors. J. Non-Cryst. Solids 119, 214–231 (1990)

    Article  ADS  Google Scholar 

  32. A.A. Attia, H.S. Soliman, M.M. Saadeldin, K. Sawaby, AC electrical conductivity, and dielectric studies of bulk p-quaterphenyl. Syn. Met. 205, 139–144 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. A. Darwish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ghamdi, S.A., Darwish, A.A.A. A study on the dielectric non-Debye relaxation and ac and dc conductivity characteristics in nanostructured film of 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphyrin. Eur. Phys. J. Plus 136, 812 (2021). https://doi.org/10.1140/epjp/s13360-021-01808-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01808-y

Navigation