Skip to main content
Log in

New interpretation of the extended geometric deformation in isotropic coordinates

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the particular case in which extended geometric deformation does consists of consecutive deformations of temporal and spatial components of the metric, in Schwarzschild-like and isotropic coordinates. In the latter, we present two inequivalent ways to perform this two-step GD. This was done in such a way that the method may be applied to different seed solutions. As an example, we use Tolman IV as seed solution, in order to obtain two inequivalent physical solutions with anisotropy in the pressures in Schwarzschild-like coordinates. In the isotropic sector, we obtained four different solutions with anisotropy in the pressures that satisfies physical acceptability conditions, using Gold III as seed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors comment: Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.]

Notes

  1. Be aware that, for simplicity, from now on, we will use r for the isotropic coordinates and \(r_1\) for the Schwarzschild coordinates

References

  1. Albert. Einstein, Akademie-Vortrage 25, 88 (1915)

  2. Richard C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  3. L. Kayll, Phys. Rev. D 67, 104015 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. D. Hans Stephani, Malcolm A.H. Kramer, Cornelius H. MacCallum, H. Eduard, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  5. M.S.R. Delgaty, L. Kayll, Comput. Phys. Commun. 115, 395 (1998)

  6. G. Lemaitre, Gen. Rel. Grav. 29, 641 (1997)

    Article  ADS  Google Scholar 

  7. Richard L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  8. L. Herrera, J. Ospino, A. Di Prisco, Phys. Rev. D 77, 027502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. L. Herrera, N.O. Santos, Phys. Rep. 286(2), 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  10. L. Herrera, A. Di Prisco, J. Martin, J. Ospino, N.O. Santos, O. Troconis, Phys. Rev. D 69, 084026 (2004)

    Article  ADS  Google Scholar 

  11. L. Herrera, N.O. Santos, A. Wang, Phys. Rev. D 78, 084026 (2008)

    Article  ADS  Google Scholar 

  12. J. Ovalle, Mod. Phys. Lett. A 23, 3247 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Ovalle, ICGA 9, 173–182 (2009)

    Google Scholar 

  14. Roberto Casadio, Jorge Ovalle, Gen. Rel. Grav. 46, 1669 (2014)

    Article  ADS  Google Scholar 

  15. J. Ovalle, F. Linares, A. Pasqua, A. Sotomayor, Class. Quant. Grav. 30, 175019 (2013)

    Article  ADS  Google Scholar 

  16. R. Casadio, J. Ovalle, R. da Rocha, Class. Quant. Grav. 31, 045016 (2014)

    Article  ADS  Google Scholar 

  17. J. Ovalle, F. Linares, Phys. Rev. D 88(10), 104026 (2013)

    Article  ADS  Google Scholar 

  18. Jorge Ovalle, A. László, R.Casadio Gergely, Class. Quant. Grav. 32, 045015 (2015)

  19. Roberto Casadio, Jorge Ovalle, Roldao da Rocha, EPL 110(4), 40003 (2015)

    Article  ADS  Google Scholar 

  20. J. Ovalle, R. Casadio, Springer Briefs in Physics (Springer, New York, 2020)

    MATH  Google Scholar 

  21. J. Ovalle, Phys. Rev. D 95(10), 104019 (2017)

  22. C. Las Heras, P. Leon, Fortsch. Phys. 66(7), 1800036 (2018)

  23. Milko Estrada, Francisco Tello-Ortiz, Eur. Phys. J. Plus 133(11), 453 (2018)

    Article  Google Scholar 

  24. Luciano Gabbanelli, Angel Rincón, Carlos Rubio, Eur. Phys. J. C 78(5), 370 (2018)

  25. E. Morales, F. Tello-Ortiz, Eur. Phys. J. C 78(10), 841 (2018)

  26. E. Morales, F. Tello-Ortiz, Eur. Phys. J. C 78(8), 618 (2018)

  27. F. Tello-Ortiz, S.K. Maurya, A. Errehymy, K.S.H. Newton Singh, M. Daoud, Eur. Phys. J. C 79(11), 885 (2019)

  28. V.A. Torres-Sánchez, E. Contreras, Eur. Phys. J. C 79(10), 829 (2019)

  29. J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Z. Stuchlik, Eur. Phys. J. C 78(11), 960 (2018)

    Article  ADS  Google Scholar 

  30. Roberto Casadio, Roldao da Rocha, Phys. Lett. B 763, 434 (2016)

    Article  ADS  Google Scholar 

  31. E. Contreras, Á. Rincón, P. Bargueño, Eur. Phys. J. C 79(3), 216 (2019)

    Article  ADS  Google Scholar 

  32. Angel Rincón, Ernesto Contreras, Francisco Tello-Ortiz, Pedro Bargueño, Gabriel Abellán, Eur. Phys. J. C 80(6), 490 (2020)

    Article  ADS  Google Scholar 

  33. J. Ovalle, R. Casadio, E. Contreras, A. Sotomayor, Phys. Dark Univ. 31, 100744 (2021)

    Article  Google Scholar 

  34. X. Francisco, L. Cedeño, E. Contreras, Phys. Dark Univ. 28, 100543 (2020)

    Article  Google Scholar 

  35. J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Z. Stuchlik, EPL 124(2), 20004 (2018)

    Article  ADS  Google Scholar 

  36. Ángel Rincón, Luciano Gabbanelli, Ernesto Contreras, Francisco Tello-Ortiz, Eur. Phys. J. C 79(10), 873 (2019)

    Article  ADS  Google Scholar 

  37. Ernesto Contreras, Pedro Bargueño, Eur. Phys. J. C 78(7), 558 (2018)

    Article  ADS  Google Scholar 

  38. E. Contreras, Class. Quant. Grav. 36(9), 095004 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  39. E. Contreras, P. Bargueño, Class. Quant. Grav. 36(21), 215009 (2019)

    Article  ADS  Google Scholar 

  40. Milko Estrada, Reginaldo Prado, Eur. Phys. J. Plus 134(4), 168 (2019)

    Article  Google Scholar 

  41. M. Sharif, A. Waseem, Ann. Phys. 405, 14 (2019)

    Article  ADS  Google Scholar 

  42. M. Sharif, S. Saba, Int. J. Mod. Phys. D 29(06), 2050041 (2020)

    Article  ADS  Google Scholar 

  43. M. Sharif, S. Saba, Eur. Phys. J. C 78(11), 921 (2018)

    Article  ADS  Google Scholar 

  44. S. K. Maurya, Abdelghani Errehymy, Ksh. Newton Singh, Francisco Tello-Ortiz, Mohammed Daoud, Phys. Dark Univ. 30, 100640 (2020)

  45. Milko Estrada, Eur. Phys. J. C 79(11), (2019) 918, [Erratum: Eur.Phys.J.C 80, 590 (2020)]

  46. P. León, A. Sotomayor, Fortsch. Phys. 67(12), 1900077 (2019)

    Article  ADS  Google Scholar 

  47. M. Sharif, A. Majid, Chin. J. Phys. 68, 406 (2020)

    Article  Google Scholar 

  48. M. Sharif, A. Majid, Phys. Dark Univ. 30, 100610 (2020)

    Article  Google Scholar 

  49. J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Eur. Phys. J. C 78(2), 122 (2018)

    Article  ADS  Google Scholar 

  50. V.A. Gabriel Abellán, S. Torres-Sánchez, E. Fuenmayor, E. Contreras, Eur. Phys. J. C 80(2), 177 (2020)

    Article  ADS  Google Scholar 

  51. Gabriel Abellán, Angel Rincon (Ernesto Fuenmayor, Ernesto Contreras, 2020). arXiv:2001.07961 [gr-qc]

  52. M. Sharif, S. Sadiq, Eur. Phys. J. Plus 133(6), 245 (2018)

  53. E. Contreras, J. Ovalle, R. Casadio (2021). https://doi.org/10.1103/PhysRevD.103.044020

  54. C. Las Heras, P. León, Eur. Phys. J. C 79(12), 990 (2019)

    Article  ADS  Google Scholar 

  55. H. Nariai, Sci. Rep. Tohoku Univ. Eighth Ser. 34(1950)

  56. W.M. Smart, R.M. Green, Astronomische Nachrichten 309(4), 280 (1988)

    Article  Google Scholar 

  57. J. Ovalle, Phys. Lett. B 788, 213 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  58. M. Sharif, Q. Ama-Tul-Mughani, Annals Phys. 415, 168122 (2020)

    Article  Google Scholar 

  59. M. Sharif, A. Majid, Phys. Dark Univ. 30, 100610 (2020)

    Article  Google Scholar 

  60. R. Casadio, J. Ovalle, Phys. Lett. B 715, 251 (2012)

    Article  ADS  Google Scholar 

  61. L. Gabbanelli, J. Ovalle, A. Sotomayor, Z. Stuchlik, R. Casadio, Eur. Phys. J. C 79(6), 486 (2019)

    Article  ADS  Google Scholar 

  62. R. Casadio, E. Contreras, J. Ovalle, A. Sotomayor, Z. Stuchlick, Eur. Phys. J. C 79(10), 826 (2019)

    Article  ADS  Google Scholar 

  63. R.T. Cavalcanti, A.G. da Silva, R. da Rocha, Class. Quant. Grav. 33(21), 215007 (2016)

    Article  ADS  Google Scholar 

  64. R. da Rocha, Phys. Rev. D 95(12), 124017 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  65. Roldao da Rocha, Eur. Phys. J. C77(5 (2017) 355

  66. A. Fernandes-Silva, R. da Rocha, Eur. Phys. J. C 78(3), 271 (2018)

    Article  Google Scholar 

  67. A. Fernandes-Silva, A.J. Ferreira-Martins, R. Da Rocha, Eur. Phys. J. C 78(8), 631 (2018)

    Article  ADS  Google Scholar 

  68. R. Da Rocha, A.A. Tomaz, Eur. Phys. J. C 79(12), 1035 (2019)

    Article  ADS  Google Scholar 

  69. Roldão da Rocha, Symmetry 12(4), 508 (2020)

    Article  Google Scholar 

  70. R. da Rocha, Phys. Rev. D 102(2), 024011 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  71. Roldão da Rocha, Anderson A. Tomaz, Eur. Phys. J. C 80(9), 857 (2020)

    Article  ADS  Google Scholar 

  72. P. Meert, R. da Rocha, Nucl. Phys. B 967, 115420 (2021)

    Article  Google Scholar 

  73. R. Casadio, P. Nicolini, R. da Rocha, Class. Quant. Grav. 35(18), 185001 (2018)

    Article  ADS  Google Scholar 

  74. Ernesto Contreras, Eur. Phys. J. C 78(8), 678 (2018)

    Article  ADS  Google Scholar 

  75. E. Contreras, F. Tello-Ortiz, S.K. Maurya, Class. Quant. Grav. 37(15), 155002 (2020)

    Article  ADS  Google Scholar 

  76. Cynthia Arias, Francisco Tello-Ortiz, Ernesto Contreras, Eur. Phys. J. C 80(5), 463 (2020)

    Article  ADS  Google Scholar 

  77. Grigoris Panotopoulos, Ángel Rincón, Eur. Phys. J. C 78(10), 851 (2018)

    Article  ADS  Google Scholar 

  78. Luciano Gabbanelli, Ángel Rincón, Carlos Rubio, Eur. Phys. J. C 78(5), 370 (2018)

    Article  ADS  Google Scholar 

  79. S.K. Maurya, Eur. Phys. J. C 79(1), 85 (2019)

  80. S.K. Maurya, F. Tello-Ortiz, Phys. Dark Univ. 27, 100442 (2020)

    Article  Google Scholar 

  81. S. Hensh, Z. Stuchlí, Eur. Phys. J. C 79(10), 834 (2019)

    Article  ADS  Google Scholar 

  82. K.S.H. Newton Singh, S.K. Maurya, M.K. Jasim, F. Rahaman, Eur. Phys. J. C 79(10), 851 (2019)

    Article  ADS  Google Scholar 

  83. S.K. Maurya, Eur. Phys. J. C 79(11), 958 (2019)

    Article  ADS  Google Scholar 

  84. S.K. Maurya, Eur. Phys. J. C 80(5), 429 (2020)

    Article  ADS  Google Scholar 

  85. S.K. Maurya, Eur. Phys. J. C 80(5), 448 (2020)

    Article  ADS  Google Scholar 

  86. M. Zubair, H. Azmat, Ann. Phys. 420, 168248 (2020)

    Article  Google Scholar 

  87. P. Boonserm, M. Visser, S. Weinfurtner, Phys. Rev. D 71, 124037 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  88. R. Casadio, J. Ovalle, R. da Rocha, Class. Quant. Grav. 32(21), 215020 (2015)

    Article  ADS  Google Scholar 

  89. S.P. Goldman, Astrop. J. 226, 1079 (1978)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We want to say thanks for the financial help received by the Projects ANT1756 and ANT1956 of the Universidad de Antofagasta. P.L wants to say thanks for the financial support received by the CONICYT PFCHA / DOCTORADO BECAS CHILE/2019 - 21190517. C.L.H wants to say thanks for the financial support received by CONICYT PFCHA / DOCTORADO BECAS CHILE/2019 - 21190263. P.L and C.L.H are also grateful with Project Fondecyt Regular 1161192, Semillero de Investigación SEM 18-02 from Universidad de Antofagasta and the Network NT8 of the ICTP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Las Heras.

Appendices

Appendix A: Physical acceptability conditions

Solving Einstein’s equations does not ensure that the solution will describe any physical system. Indeed, among all the known solutions of Einstein’s equations, only a part of them fulfill the physically acceptable conditions (see for example [5]).

Then, in order to ensure that the solutions of Einstein’s equations are physically acceptable, we must verify if the following conditions are satisfied

  • \(P_r\), \(P_t\) and \(\rho \) are positive and finite inside the distribution.

  • \(\frac{dP_r}{dr}\), \(\frac{dP_t}{dr}\) and \(\frac{d\rho }{dr}\) are monotonically decreasing.

  • Dominant energy condition: \(\frac{P_r}{\rho }\le 1\)  ,   \(\frac{P_t}{\rho }\) \(\le 1\).

  • Causality condition: \(0<\frac{dP_r}{d\rho }<1\) ,  \(0<\frac{dP_t}{d\rho }<1\).

  • The local anisotropy of the distribution should be zero at the center and increasing towards the surface.

Appendix B: The Ricci invariants

Let us verify that solutions obtained by EGD, and therefore, by any of its limits, are in general inequivalent to the seed solution considered. In order to see this, let us notice that the Ricci invariants can be written in terms of the trace-free Ricci tensor

$$\begin{aligned} S^\mu _\nu = R^\mu _\nu -\delta ^\mu _\nu \frac{R}{4}, \end{aligned}$$
(232)

where \(R^\mu _\nu \) and R are the Ricci tensor and the scalar curvature , respectively. Besides the scalar curvature, Ricci invariants are defined as

$$\begin{aligned} r_1= & {} \frac{1}{4}S^\mu _\nu S^\nu _\mu , \end{aligned}$$
(233)
$$\begin{aligned} r_2= & {} -\frac{1}{8}S^\mu _\nu S^\rho _\mu S^\nu _\rho , \end{aligned}$$
(234)
$$\begin{aligned} r_3= & {} S^\mu _\nu S^\rho _\mu S^\lambda _\rho S^\nu _\lambda . \end{aligned}$$
(235)

Let us assume that \(\{{\tilde{\nu }},{\tilde{\mu }}\}\) and \(\{\nu ,\mu \}\) represent two solutions of the of Einstein’s equations for an spherically symmetric fluid with a line element of the form (1). Defining \({\tilde{\nu }}\) and \({\tilde{\mu }}\) as

$$\begin{aligned} {\tilde{\mu }} = \mu + \alpha f(r), \quad {\tilde{\nu }} = \nu + \beta h(r), \end{aligned}$$
(236)

then it can be shown that the scalar curvature and the the trace-free Ricci tensor satisfies the following relations

$$\begin{aligned} {\tilde{R}} = R + \alpha \zeta _1 (r) + \beta \zeta _2 (r) +\alpha \beta \zeta _3 (r), \end{aligned}$$
(237)

and

$$\begin{aligned} {\tilde{S}}^\mu _\nu= & {} S^\mu _\nu + \frac{\delta ^\mu _0\delta ^0_\nu }{2}\left[ \alpha \left( \frac{\zeta _1}{2}-\frac{2}{r}\left( \frac{f}{r}+f'\right) \right) +\frac{\beta }{2}(\zeta _2+\alpha \zeta _3)\right] \nonumber \\&\quad +\frac{\delta ^\mu _1\delta ^1_\nu }{2}\left[ \alpha \left( \frac{\zeta _1}{2}-\frac{2f}{r}\left( \nu '+\frac{1}{r}\right) \right) + \beta \left( \frac{\zeta _2}{2}-\frac{2\mu h'}{r}\right) \right. \nonumber \\&+ \left. \alpha \beta \left( \frac{\zeta _3}{2}-\frac{2fh'}{r}\right) \right] + \frac{\delta ^\mu _2\delta ^2_\nu }{2}\Bigg [\alpha \left( \frac{f}{r}\left( \nu '+\frac{2}{r}\right) + \frac{f'}{r}-\frac{\zeta _1}{2}\right) \nonumber \\&\quad +\beta \left( \frac{\mu h'}{r}-\frac{\zeta _2}{2}\right) + \alpha \beta \left( \frac{fh'}{r}-\frac{\zeta _3}{2}\right) \Bigg ] \nonumber \\&+ \frac{\delta ^\mu _3\delta ^3_\nu }{2} \Bigg [\alpha \left( \frac{f}{r}\left( \nu '+\frac{2}{r}\right) + \frac{f'}{r}-\frac{\zeta _1}{2}\right) \nonumber \\&\quad +\beta \left( \frac{\mu h'}{r}-\frac{\zeta _2}{2}\right) + \alpha \beta \left( \frac{fh'}{r}-\frac{\zeta _3}{2}\right) \Bigg ] \end{aligned}$$
(238)

where

$$\begin{aligned} \zeta _1 (r)= & {} \frac{1}{2}\left\{ f\left[ (\nu ')^2+2\nu ''+\frac{4}{r}\left( \nu '+\frac{1}{r}\right) \right] + f'\left( \nu '+\frac{4}{r}\right) \right\} , \\ \zeta _2 (r)= & {} \frac{1}{2}\left\{ \mu \left[ 2h''+2h'\nu '+\beta (h')^2+\frac{4}{r}h'\right] +\mu 'h' \right\} , \\ \zeta _3 (r)= & {} \frac{1}{2}\left\{ f \left[ 2h''+2h'\nu '+\beta (h')^2+\frac{4}{r}h'\right] +f'h' \right\} . \end{aligned}$$

Now, using (1), the Ricci invariants can be written as

$$\begin{aligned} {\tilde{r}}_1= & {} \frac{1}{4} \left[ ({\tilde{S}}^0_0)^2+({\tilde{S}}^1_1)^2+2({\tilde{S}}^2_2)^2\right] , \end{aligned}$$
(239)
$$\begin{aligned} {\tilde{r}}_2= & {} -\frac{1}{8} \left[ ({\tilde{S}}^0_0)^3+({\tilde{S}}^1_1)^3+2({\tilde{S}}^2_2)^3\right] , \end{aligned}$$
(240)
$$\begin{aligned} {\tilde{r}}_3= & {} ({\tilde{S}}^0_0)^4+({\tilde{S}}^1_1)^4+2({\tilde{S}}^2_2)^4. \end{aligned}$$
(241)

Thus, from (238), it is evident that in general

$$\begin{aligned} {\tilde{r}}_1 \not = r_1, \quad {\tilde{r}}_2 \not = r_2, \quad {\tilde{r}}_3 \not = r_3, \end{aligned}$$
(242)

and therefore the two solutions of Einstein’s equations, represented by \(\{{\tilde{\nu }},{\tilde{\mu }}\}\) and \(\{\nu ,\mu \}\), are inequivalent. It is easy to see, from equations (237) and (238), that the solutions are different even when we take \(\alpha =0\) or \(\beta =0\), which corresponds to the to two limits of the EGD method mentioned in Section (2). Since the right and left paths of the two-step GD produce different results for the deformations functions f and g, then the Ricci invariant of the final solutions obtained with each path will be in general different. This indicates that the right path and left paths leads, in general, to inequivalent solutions. For the case of the isotropic coordinates the analysis is analogous.

Appendix C: Two-step GD and the BVW theorems

In this appendix we will present the unnoticed relation that exists between the two-step GD (and therefore, EGD) with the first four theorems presented by the authors in [87]. Let us consider as seed solution a perfect fluid sphere represented by the set of functions \(\{\nu ,\mu ,\rho ,P\}\).

1.1 Left path

Starting with the pure spatial deformation (MGD) and imposing the condition \((\theta ^f_L)^1_1=(\theta ^f_L)^2_2\), implies that the system (36)-(38) leads to the following differential equation

$$\begin{aligned} 2f_L \left[ r^2 B''-(rB)'\right] + f'_Lr(rB)'=0, \end{aligned}$$
(243)

where \(B(r)^2=\exp {\nu }\). The solution to (243) can be written as

$$\begin{aligned} f_L = \frac{r^2}{[(rB)']^2}\exp {\int \frac{4B'}{(rB)'}dr}. \end{aligned}$$
(244)

The new solution is given by the set of functions \(\{\nu ,{\bar{\mu }},{\bar{\rho }},{\bar{P}}\}\), where

$$\begin{aligned} {\bar{\mu }}= & {} \mu +\alpha f_L, \end{aligned}$$
(245)
$$\begin{aligned} {\bar{\rho }}= & {} \rho +\alpha (\theta ^f_L)^0_0, \end{aligned}$$
(246)
$$\begin{aligned} {\bar{P}}= & {} P-\alpha (\theta ^f_L)^1_1. \end{aligned}$$
(247)

This correspond to the transformation in the first theorem in [87]. Now, let us consider \(\{\nu ,{\bar{\mu }},{\bar{\rho }},{\bar{P}}\}\) as a seed solution and perform a pure temporal deformation with the constraint \((\theta ^h_L)^1_1=(\theta ^h_L)^2_2\), then the system (45)–(47) leads to the following differential equation

$$\begin{aligned} \frac{{\bar{\mu }}}{r}[r(Z_L''+Z_L'\nu )-Z_L']+\frac{{\bar{\mu }}'Z_L'}{2}=0, \end{aligned}$$
(248)

where \( Z_L(r)^2= \exp {\beta h_L}\). The solution in this case is

$$\begin{aligned} Z_L(r) = A+B\int \frac{rdr}{e^{\nu }\sqrt{{\bar{\mu }}}}. \end{aligned}$$
(249)

The final solution is characterized by the set \(\{{\tilde{\nu }},{\tilde{\mu }},{\tilde{\rho }},{\tilde{P}}\}\)

$$\begin{aligned} {\tilde{\nu }}= & {} \nu +\beta h_L, \end{aligned}$$
(250)
$$\begin{aligned} {\tilde{\mu }}= & {} {\bar{\mu }} = \mu + \alpha f_L, \end{aligned}$$
(251)
$$\begin{aligned} {\tilde{\rho }}= & {} \rho + \alpha (\theta ^f_L)^0_0, \end{aligned}$$
(252)
$$\begin{aligned} {\tilde{P}}= & {} P - \alpha \left( (\theta ^f_L)^1_1+ \frac{\beta }{\alpha }(\theta ^h_L)^1_1\right) . \end{aligned}$$
(253)

The complete left path that goes from \(\{\nu ,\mu ,\rho ,P\}\) to \(\{{\tilde{\nu }},{\tilde{\mu }},{\tilde{\rho }},{\tilde{P}}\}\) corresponds to the transformation in the third theorem in [87].

1.2 Right path

As in the left path, let us begin by taking \(\{\nu ,\mu ,\rho ,P\}\) as seed solution. Then the pure temporal deformation of the metric subject to the constraint \((\theta ^h_R)^1_1=(\theta ^h_R)^2_2\), leads to the following differential equation

$$\begin{aligned} \frac{\mu }{r}[r(Z_R''+Z_R'\nu )-Z_R']+\frac{\mu 'Z_R'}{2}=0, \end{aligned}$$
(254)

notice that it has the same form of Eq (248) but changing \({\tilde{\mu }}\) with \(\mu \). Therefore, it can be check that

$$\begin{aligned} Z_R(r) = C+D\int \frac{rdr}{e^{\nu }\sqrt{\mu }}. \end{aligned}$$
(255)

The new solution is given by \(\{{\bar{\nu }},\mu ,\rho ,{\bar{P}}\}\) where

$$\begin{aligned} {\bar{\nu }}= & {} \nu +\alpha h_L, \end{aligned}$$
(256)
$$\begin{aligned} {\bar{P}}= & {} P-\alpha (\theta ^h_L)^1_1. \end{aligned}$$
(257)

The transformation from \(\{\nu ,\mu ,\rho ,P\}\) to \(\{{\bar{\nu }},\mu ,\rho ,{\bar{P}}\}\), given by the pure temporal deformation, corresponds to the second theorem in [87]. Now we will take \(\{{\bar{\nu }},\mu ,\rho ,{\bar{P}}\}\) as seed solution and perform a pure spatial deformation, subject to the constraint \((\theta ^f_R)^1_1=(\theta ^f_R)^2_2\). In this case the system (36)–(38) leads to the following differential equation

$$\begin{aligned} 2f_R \left[ r^2 {\bar{B}}''-(r{\bar{B}})'\right] + f'_Rr(r{\bar{B}})'=0, \end{aligned}$$
(258)

where \({\bar{B}}(r)^2=\exp {{\bar{\nu }}}\). Then

$$\begin{aligned} f_R = \frac{r^2}{[(r{\bar{B}})']^2}\exp {\int \frac{4{\bar{B}}'}{(r{\bar{B}})'}dr}. \end{aligned}$$
(259)

and the final solution of the right path can be written as

$$\begin{aligned} {\tilde{\nu }}= & {} {\bar{\nu }}=\nu +\alpha h_R, \end{aligned}$$
(260)
$$\begin{aligned} {\tilde{\mu }}= & {} \mu + \beta f_R, \end{aligned}$$
(261)
$$\begin{aligned} {\tilde{\rho }}= & {} \rho + \beta (\theta ^f_R)^0_0, \end{aligned}$$
(262)
$$\begin{aligned} {\tilde{P}}= & {} P - \beta \left( (\theta ^f_R)^1_1+ \frac{\alpha }{\beta }(\theta ^h_R)^1_1\right) . \end{aligned}$$
(263)

The complete right path that goes from \(\{\nu ,\mu ,\rho ,P\}\) to \(\{{\tilde{\nu }},{\tilde{\mu }},{\tilde{\rho }},{\tilde{P}}\}\) corresponds to the transformation in the fourth theorem in [87].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Las Heras, C., León, P. New interpretation of the extended geometric deformation in isotropic coordinates. Eur. Phys. J. Plus 136, 828 (2021). https://doi.org/10.1140/epjp/s13360-021-01759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01759-4

Navigation