Skip to main content
Log in

Dynamic deflection responses of glass/epoxy hybrid composite structure filled with hollow-glass microbeads

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The dynamic deflection characteristics of the hybrid composite structure (hollow-glass microsphere and multi-layer glass/epoxy composite) were computed numerically using in-house MATLAB code and verified with experimental results. The physical hybrid structural model is derived in the framework of equivalent higher-order single-layer kinematic theory considering the continuity of inter-laminar shear stresses to imitate the actual deformation behavior. The solutions are computed through the computer code prepared in MATLAB in conjunction with the prepared mathematical model. The model stability and accuracy have been verified by comparing the present results with the available benchmark solutions. Additionally, the hybrid multi-layered composite panel is fabricated by taking different volume fractions of the hollow-glass microsphere and the composite properties recorded from the experimental test for the subsequent utilization. Furthermore, the experimental transient data are compared with the finite element solutions to show the model adequacy. Finally, a few primary input parameters affecting the structural stiffness and the related design aspect, including the geometrical configuration efficacy, have been explored using the currently developed finite element model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.N. Reddy, Mechanics of Laminated Composite Paltes and Shells Theory and Analysis, 2nd edn. (CRC Press, 2004)

    Google Scholar 

  2. M. Mukhopadhyay, Mechanics of Composite Materials and Structures (University Press (India) Private Limited, Hyderabad, 2004)

    Google Scholar 

  3. G. Singh, Y.V.K. Sadasiva Rao, Compos. Struct. 8, 13 (1987)

    Google Scholar 

  4. Z. Aslan, R. Karakuzu, Math. Comput. Appl. 7, 73 (2002)

    Google Scholar 

  5. A. Bhimaraddi, Thin-Walled Struct. 5, 125 (1987)

    Article  Google Scholar 

  6. J. Chen, D.J. Dawe, Compos. Struct. 35, 213 (1996)

    Article  Google Scholar 

  7. C.-S. Chen, Compos. Part B Eng. 38, 437 (2007)

    Article  Google Scholar 

  8. N. Nanda, J.N. Bandyopadhyay, J. Sound Vib. 325, 174 (2009)

    Article  ADS  Google Scholar 

  9. J.K. Chen, C.T. Sun, Comput. Struct. 21, 513 (1985)

    Article  Google Scholar 

  10. W.-Y. Jung, S.-C. Han, Compos. Part B Eng. 56, 372 (2014)

    Article  Google Scholar 

  11. P. Phung-Van, A.J.M. Ferreira, H. Nguyen-Xuan, M. Abdel Wahab, Compos. Part B Eng. 118, 125 (2017)

    Article  Google Scholar 

  12. T. Kant, R.V. Ravichandran, B.N. Pandya, B.N. Mallikarjuna, Compos. Struct. 9, 319 (1988)

    Article  Google Scholar 

  13. T. Kant, J.H. Varaiya, C.P. Arora, Comput. Struct. 36, 401 (1990)

    Article  Google Scholar 

  14. A.K. Nayak, R.A. Shenoi, S.S.J. Moy, Compos. Struct. 64, 249 (2004)

    Article  Google Scholar 

  15. A. Karmakar, P.K. Sinha, Int. J. Crashworthiness 3, 379 (1998)

    Article  Google Scholar 

  16. A.A. Khdeir, J.N. Reddy, Compos. Sci. Technol. 34, 205 (1989)

    Article  Google Scholar 

  17. Y. Nath, K.K. Shukla, J. Sound Vib. 247, 509 (2001)

    Article  ADS  Google Scholar 

  18. Y.-W. Kim, Y.-S. Lee, J. Sound Vib. 252, 1 (2002)

    Article  ADS  Google Scholar 

  19. Y.V. Satish Kumar, M. Mukhopadhyay, Compos. Struct. 58, 97 (2002)

    Google Scholar 

  20. S. Maleki, M. Tahani, A. Andakhshideh, ZAMM J. Appl. Math. Mech. / Zeitschrift Für Angew. Math. Und Mech. 92, 124 (2012)

    Article  ADS  Google Scholar 

  21. S. Maleki, M. Tahani, ZAMM. J. Appl. Math. Mech. / Zeitschrift Für Angew. Math. Und Mech. 92, 652 (2012)

    Article  ADS  Google Scholar 

  22. H.S. Kim, A. Ghoshal, J. Kim, S.-B. Choi, Smart Mater. Struct. 15, 221 (2006)

    Article  ADS  Google Scholar 

  23. C.K. Kundu, P.K. Sinha, J. Reinf. Plast. Compos. 25, 1129 (2006)

    Article  ADS  Google Scholar 

  24. S.J. Lee, J.N. Reddy, F. Rostam-Abadi, Finite Elem. Anal. Des. 40, 463 (2004)

    Article  Google Scholar 

  25. N.V.S. Naidu, P.K. Sinha, Compos. Struct. 72, 280 (2006)

    Article  Google Scholar 

  26. N. Nanda, J.N. Bandyopadhyay, Aircr. Eng. Aerosp. Technol. 80, 165 (2008)

    Article  Google Scholar 

  27. P.K. Parhi, S.K. Bhattacharyya, P.K. Sinha, J. Reinf. Plast. Compos. 19, 863 (2000)

    Article  Google Scholar 

  28. T. Pervez, N. Zabaras, Int. J. Numer. Methods Eng. 33, 1059 (1992)

    Article  Google Scholar 

  29. J.N. Reddy, Int. J. Numer. Methods Eng. 19, 237 (1983)

    Article  Google Scholar 

  30. J.N. Reddy, AIAA J. 21, 621 (1983)

    Article  ADS  Google Scholar 

  31. V.K. Singh, T.R. Mahapatra, S.K. Panda, Compos. Struct. 157, 121 (2016)

    Article  Google Scholar 

  32. B. Devarajan, R.K. Kapania, Compos. Struct. 238, 111881 (2020)

    Article  Google Scholar 

  33. H. Farokhi, M.H. Ghayesh, Int. J. Eng. Sci. 133, 264 (2018)

    Article  Google Scholar 

  34. S. Dastjerdi, M. Malikan, V.A. Eremeyev, B. Akgöz, Ö. Civalek, Compos. Struct. 272, 114192 (2021)

    Article  Google Scholar 

  35. J.N. Reddy, Int. J. Solids Struct. 20, 881 (1984)

    Article  Google Scholar 

  36. R.D. Cook, D.S. Malkus, M.E. Plesha, R.J. Witt, Concepts and Applications of Finite Element Analysis, Fourth (John Wiley & Sons, INC, 2002)

    Google Scholar 

  37. V.R. Kar, S.K. Panda, Compos. Struct. 129, 202 (2015)

    Article  Google Scholar 

  38. K.-J. Bathe, Finite Elment Procedures, 2nd edn. (Prentice Hall, Pearson Education Inc, Watertown, MA, 2016)

    Google Scholar 

  39. R.M. Jones, Mechanics of Composite Materials, Second (Taylor and Francis, Philadelphia, 1975)

    Google Scholar 

  40. J. Mohanty, S.K. Sahu, P.K. Parhi, Int. J. Struct. Stab. Dyn. 12, 377 (2012)

    Article  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Panda.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewangan, H.C., Thakur, M., Patel, B. et al. Dynamic deflection responses of glass/epoxy hybrid composite structure filled with hollow-glass microbeads. Eur. Phys. J. Plus 136, 722 (2021). https://doi.org/10.1140/epjp/s13360-021-01710-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01710-7

Navigation