Skip to main content
Log in

Translating from Na\(^+\) to Ca\(^{2+}\): Na/Ca-exchanger exerts Na\(^+\)-dependent control over astrocytic Ca\(^{2+}\) oscillations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Recently accumulated evidences suggest that astrocyte signaling is in touch link with extracellular volume regulation and interstitial fluid drainage from the brain. Classical understanding of astrocyte activity is based on IP\(_3\)-dependent calcium exchange with intracellular stores. Recent evidence shifts focus to calcium entry from extracellular space via multiple mechanisms and widens it to taking other ions into account. It has been hypothesized that Na/Ca-exchanger can translate activity-dependent Na\(^+\) transients into modulation of Ca\(^{2+}\) dynamics. We combine a model of IP\(_3\)-based Ca\(^{2+}\) dynamics with a model of Ca\(^{2+}\) flow through Na/Ca-exchanger to provide theoretical insights into the possible effects of such modulation. We find that the exchanger can provide for bidirectional Na\(^+\)-dependent modulation of the sensitivity to extracellular glutamate, oscillation amplitude and frequency modulation, as well as extending the available set of dynamical regimes. The extent of the emergent Na\(^+\) sensitivity is predicted to be scaled by a morphology-dependent balance between the maximal flow through the exchanger and the rate of entry from intracellular stores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Bazargani, D. Attwell, Astrocyte calcium signaling: the third wave. Nat. Neurosci. 19(2), 182–9 (2016)

    Article  Google Scholar 

  2. A. Verkhratsky, M. Nedergaard, Physiology of astroglia. Physiol. Rev. 98(1), 239–389 (2018)

    Article  Google Scholar 

  3. M. De Pittà, H. Berry, A neuron-glial perspective for computational neuroscience, in Computational Glioscience (Springer, Berlin, 2019), pp. 3–35

    Google Scholar 

  4. L.M. Hablitz, V. Plá, M. Giannetto, H.S. Vinitsky, F.F. Stæger, T. Metcalfe, R. Nguyen, A. Benrais, M. Nedergaard, Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun. 11(1), 4411 (2020)

    Article  ADS  Google Scholar 

  5. B.A. Plog, M. Nedergaard, The glymphatic system in central nervous system health and disease: past, present, and future. Annu. Rev. Pathol. 13, 379–394 (2018)

    Article  Google Scholar 

  6. M. Potokar, J. Jorgacevski, R. Zorec, Astrocyte aquaporin dynamics in health and disease. Int. J. Mol. Sci. 17(7), 1121 (2016)

    Article  Google Scholar 

  7. Y.-F. Wang, V. Parpura, Astroglial modulation of hydromineral balance and cerebral edema. Front. Mol. Neurosci. 11, 204 (2018)

    Article  Google Scholar 

  8. W.C. Risher, R.D. Andrew, S.A. Kirov, Real-time passive volume responses of astrocytes to acute osmotic and ischemic stress in cortical slices and in vivo revealed by two-photon microscopy. Glia 57(2), 207–221 (2009)

    Article  Google Scholar 

  9. C.M. Florence, L.D. Baillie, S.J. Mulligan, Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux. PLoS ONE 7(11), e51124 (2012)

    Article  ADS  Google Scholar 

  10. L. Xie, H. Kang, Q. Xu, M.J. Chen, Y. Liao, M. Thiyagarajan, J. O’Donnell, D.J. Christensen, C. Nicholson, J.J. Iliff et al., Sleep drives metabolite clearance from the adult brain. Science 342(6156), 373–377 (2013)

    Article  ADS  Google Scholar 

  11. F. Ding, J. O’Donnell, Q. Xu, N. Kang, N. Goldman, M. Nedergaard, Changes in the composition of brain interstitial ions control the sleep-wake cycle. Science 352(6285), 550–555 (2016)

    Article  ADS  Google Scholar 

  12. J. O’Donnell, F. Ding, M. Nedergaard, Distinct functional states of astrocytes during sleep and wakefulness: is norepinephrine the master regulator? Curr. Sleep Med. Rep. 1(1), 1–8 (2015)

    Article  Google Scholar 

  13. A.M. Ingiosi, C.R. Hayworth, D.O. Harvey, K.G. Singletary, M.J. Rempe, J.P. Wisor, M.G. Frank, A role for Astroglial calcium in mammalian sleep and sleep regulation. Curr. Biol. 30(22), 4373–4383 (2020)

    Article  Google Scholar 

  14. A. Semyanov, Spatiotemporal pattern of calcium activity in astrocytic network. Cell Calcium 78, 15–25 (2019)

    Article  Google Scholar 

  15. G. Ullah, P. Jung, A.H. Cornell-Bell, Anti-phase calcium oscillations in astrocytes via inositol (1,4,5)-trisphosphate regeneration. Cell Calcium 39(3), 197–208 (2006)

    Article  Google Scholar 

  16. M. De Pittà, V. Volman, H. Levine, G. Pioggia, D. De Rossi, E. Ben-Jacob, Coexistence of amplitude and frequency modulations in intracellular calcium dynamics. Phys. Rev. E 77, 030903 (2008)

    Article  Google Scholar 

  17. M. De Pittà, M. Goldberg, V. Volman, H. Berry, E. Ben-Jacob, Glutamate regulation of calcium and IP\(_3\) oscillating and pulsating dynamics in astrocytes. J. Biol. Phys. 35(4), 383–411 (2009)

    Google Scholar 

  18. Y.X. Li, J. Rinzel, Equations for InsP3 receptor-mediated [Ca\(^{2+}\)]\(_i\) oscillations derived from a detailed kinetic model: A Hodgkin-Huxley like formalism. Proc. Natl. Acad. Sci. USA 166(4), 461–73 (1994)

    Google Scholar 

  19. C.R. Rose, D. Ziemens, A. Verkhratsky, On the special role of NCX in astrocytes: Translating Na\(^{+}\)-transients into intracellular Ca\(^{2+}\) signals. Cell Calcium 86, 102154 (2020)

    Article  Google Scholar 

  20. A. Minelli, P. Castaldo, P. Gobbi, S. Salucci, S. Magi, S. Amoroso, Cellular and subcellular localization of Na\(^+\)-Ca\(^{2+}\) exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat. Cell Calcium 41(3), 221–234 (2007)

    Article  Google Scholar 

  21. K. Breslin, J.J. Wade, K. Wong-Lin, J. Harkin, B. Flanagan, H. Van Zalinge, S. Hall, M. Walker, A. Verkhratsky, L. McDaid, Potassium and sodium microdomains in thin astroglial processes: a computational model study. PLoS Comput. Biol. 14(5), e1006151 (2018)

    Article  Google Scholar 

  22. C.R. Rose, A. Verkhratsky, Glial ionic excitability: the role for sodium. Glia 64(10), 1609–10 (2016)

    Article  Google Scholar 

  23. D. Ziemens, F. Oschmann, N. Gerkau, C. Rose, Heterogeneity of activity-induced sodium transients between astrocytes of the mouse hippocampus and neocortex: mechanisms and consequences. J. Neurosci. 39, 2620–2634 (2019)

    Article  Google Scholar 

  24. H. Rojas, C. Colina, M. Ramos, G. Benaim, E.H. Jaffe, C. Caputo, R. DiPolo, Na\(^+\) entry via glutamate transporter activates the reverse Na\(^+\)/Ca\(^{2+}\) exchange and triggers Ca(i)\(^{2+}\)-induced Ca\(^{2+}\) release in rat cerebellar type-1 astrocytes. J. Neurochem. 100(5), 1188–202 (2007)

    Article  Google Scholar 

  25. J.J. Iliff, M. Wang, Y. Liao, B.A. Plogg, W. Peng, G.A. Gundersen, H. Benveniste, G.E. Vates, R. Deane, S.A. Goldman, E.A. Nagelhus, M. Nedergaard, A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid \(\beta \). Sci. Transl. Med. 4(147), 147ra111 (2012)

    Article  Google Scholar 

  26. J. Langer, N.J. Gerkau, A. Derouiche, C. Kleinhans, B. Moshrefi-Ravasdjani, M. Fredrich, K.W. Kafitz, G. Seifert, C. Steinhäuser, C.R. Rose, Rapid sodium signaling couples glutamate uptake to breakdown of ATP in perivascular astrocyte endfeet. Glia 65(2), 293–308 (2017)

    Article  Google Scholar 

  27. S. Earley, J.E. Brayden, Transient receptor potential channels in the vasculature. Physiol. Rev. 95(2), 645–90 (2015)

    Article  Google Scholar 

  28. N.J. Gerkau, C. Rakers, S. Durry, G.C. Petzold, C.R. Rose, Reverse NCX attenuates cellular sodium loading in metabolically compromised cortex. Cereb. Cortex 28(12), 4264–4280 (2018)

    Article  Google Scholar 

  29. B. Lenart, D.B. Kintner, G.E. Shull, D. Sun, Na-K-Cl cotransporter-mediated intracellular Na+ accumulation affects Ca2+ signaling in astrocytes in an in vitro ischemic model. J. Neurosci. 24(43), 9585–97 (2004)

    Article  Google Scholar 

  30. F. Oschmann, K. Mergenthaler, E. Jungnickel, K. Obermayer, Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes. PLoS Comput. Biol. 13(2), e1005377 (2017)

    Article  ADS  Google Scholar 

  31. K. Mergenthaler, F. Oschmann, K. Obermeyer, Glutamate uptake by astrocytic transporters, in Computational Glioscience, ed. by M. De Pittà, H. Berry (Springer, Berlin, 2019), pp. 329–361

    Chapter  Google Scholar 

  32. L. Héja, J. Kardos, NCX activity generates spontaneous Ca. Cell Calcium 86, 102137 (2020)

    Article  Google Scholar 

  33. A.R. Brazhe, A.Y. Verisokin, D.V. Verveyko, D.E. Postnov, Sodium-calcium exchanger can account for regenerative Ca\(^{2+}\) entry in thin astrocyte processes. Front. Cell. Neurosci. 12, 250 (2018)

    Article  Google Scholar 

  34. D.W. Hilgemann, S. Matsuoka, G.A. Nagel, A. Collins, Steady-state and dynamic properties of cardiac sodium-calcium exchange. Sodium-dependent inactivation. J. Gen. Physiol. 100(6), 905–32 (1992)

    Article  Google Scholar 

  35. S. Matsuoka, K.D. Philipson, D.W. Hilgemann, Multiple functional states of the cardiac Na\(^+\)-Ca\(^{2+}\) exchanger. Whole-cell, native-excised, and cloned-excised properties. Ann. N. Y. Acad. Sci. 779, 159–70 (1996)

    Article  ADS  Google Scholar 

  36. V. Lariccia, S. Piccirillo, A. Preziuso, S. Amoroso, S. Magi, Cracking the code of sodium/calcium exchanger (NCX) gating: old and new complexities surfacing from the deep web of secondary regulations. Cell Calcium 87, 102169 (2020)

    Article  Google Scholar 

  37. J.P. Reeves, M. Condrescu, Ionic regulation of the cardiac sodium-calcium exchanger. Channels (Austin) 2(5), 322–8 (2008)

    Article  Google Scholar 

  38. J.P. Reeves, M. Condrescu, J. Urbanczyk, O. Chernysh, New modes of exchanger regulation: physiological implications. Ann. N. Y. Acad. Sci. 1099, 64–77 (2007)

    Article  ADS  Google Scholar 

  39. C.R. Weber, K.S. Ginsburg, K.D. Philipson, T.R. Shannon, D.M. Bers, Allosteric regulation of Na/Ca exchange current by cytosolic Ca in intact cardiac myocytes. J. Gen. Physiol. 117(2), 119–31 (2001)

    Article  Google Scholar 

  40. K.S. Ginsburg, C.R. Weber, D.M. Bers, Cardiac Na\(^+\)-Ca\(^{2+}\) exchanger: dynamics of Ca\(^{2+}\)-dependent activation and deactivation in intact myocytes. J. Physiol. 591(8), 2067–86 (2013)

    Article  Google Scholar 

  41. Y. Fujioka, K. Hiroe, S. Matsuoka, Regulation kinetics of Na+–Ca2+ exchange current in guinea-pig ventricular myocytes. J. Physiol. 529(Pt 3), 611–23 (2000)

    Article  Google Scholar 

  42. S.H. Lee, W.T. Kim, A.H. Cornell-Bell, H. Sontheimer, Astrocytes exhibit regional specificity in gap-junction coupling. Glia 11(4), 315–25 (1994)

    Article  Google Scholar 

  43. V. Matrosov, S. Gordleeva, N. Boldyreva, E. Ben-Jacob, V. Kazantsev, M. De Pittà, Emergence of regular and complex calcium oscillations by inositol 1,4,5-trisphosphate signaling in astrocytes, in Computational Glioscience, ed. by M. De Pittà, H. Berry (Springer, Berlin, 2019), pp. 151–176

    Chapter  Google Scholar 

  44. L.F. Agnati, M. Zoli, I. Strömberg, K. Fuxe, Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 69(3), 711–726 (1995)

    Article  Google Scholar 

  45. E. Syková, C. Nicholson, Diffusion in brain extracellular space. Physiol. Rev. 88(4), 1277–1340 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Yu.V. and D.V.V. acknowledge support from Russian Science Foundation, project #19-15-00201 (code writing, numeric simulation, study and discussion of Glu-driven effects). D.E.P. and A.R.B. acknowledge the support by the RFBR grant #19-515-55016 (model development, study and discussion of allosteric regulation effects).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Yu. Verisokin.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 149 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verisokin, A.Y., Verveyko, D.V., Kucherenko, V.V. et al. Translating from Na\(^+\) to Ca\(^{2+}\): Na/Ca-exchanger exerts Na\(^+\)-dependent control over astrocytic Ca\(^{2+}\) oscillations. Eur. Phys. J. Plus 136, 718 (2021). https://doi.org/10.1140/epjp/s13360-021-01687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01687-3

Navigation