Skip to main content
Log in

Investigation of FHD effects on heat transfer in a differentially heated cavity partially filled with porous medium utilizing Buongiorno’s model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present work reports the effects of ferro-hydrodynamics on heat transfer and fluid flow in a cavity partially filled with a porous medium for the first time. Different magnetic, flow and porosity parameters, including magnetic number, magnet position, Rayleigh number, Darcy number and the porous medium filling ratio, are studied numerically. To calculate the nanoparticle distribution inside the cavity, Buongiorno’s two-phase non-homogenous model has been utilized. The results of validation tests with the previous works show very good agreement between the results. Based on the outcomes, the best heat transfer enhancement will occur at a specific position of the magnet near the wall. At this position, the average Nusselt number enhancement amounts to 12%. On the other hand, the intensity of the magnetic field can cause more than 55% increase in the average Nusselt number. This enhancement is shown to fade in large Rayleigh numbers. Magnet size is another important magnetic property that causes up to 48% intensification in Nu. Furthermore, the ratio of the fluid to porous region is shown to have a significant effect on heat transfer rates which can grow up to 150%. Rayleigh number is shown to have a strong influence on the Nusselt number. Impermeability of the porous medium alters the heat transfer rates up to 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

C:

Concentration

C0 :

Bulk nanoparticle volume fraction

\({c}_{p}\) :

Specific heat (J/kg.K)

DB :

Brownian diffusion coefficient (m2/s)

DT :

Thermophoresis diffusion coefficient (m2/s)

Da:

Darcy number (K/H2)

Ec:

Eckert number

F:

Forchheimer drag coefficient

Gr:

Grashof number

\(\stackrel{-}{H}\) :

Magnetic field strength (A/m)

k:

Thermal conductivity (W/mK)

kb :

Boltzmann constant (1.380648 × 1023 J/K)

K:

Permeability (m2)

L:

Length (m)

Le :

Lewis number

m:

Shape factor of nanoparticle

Ms :

Saturation magnetization (A/m)

M:

Magnetization (A/m)

Mn:

Magnetic number

Nb :

Brownian motion number

Nt :

Thermophoresis number

Nu:

Nusselt number (hL/k)

p:

Pressure (Pa)

Pr:

Prandtl number

Ra:

Rayleigh Number

T:

Temperature (K)

U:

Dimensionless velocity (x-component)

V:

Dimensionless velocity (y-component)

X:

Dimensionless x-component of location

X′:

Dimensionless x-component of the magnet

Y:

Dimensionless y-component of location

Y′:

Dimensionless y-component of the magnet

β :

Thermal expansion coefficient (K1)

ε:

Porosity

ε1 :

Curie temperature ratio

ε2 :

Temperature ratio

\(\mu \) :

Viscosity (Pa.s)

\({\mu }_{0}\) :

Magnetic permeability (H/m)

\(\theta \) :

Dimensionless temperature

\(\rho \) :

Density (kg/m3)

α:

Thermal diffusivity (m2/s)

\(\nu\) :

Momentum diffusivity (m2/s)

\(\varphi\) :

Nanoparticle volume fraction

avg:

Average

c:

Cold

eff:

Effective

f:

Base fluid

H:

Hot

nf:

Nanofluid

P:

Nanoparticle

w:

Wall

m:

Magnet

*:

Dimensional values

References

  1. P. Cheng, W.J. Minkowycz, Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. J. Geophys. Res. 82, 2040–2044 (1997)

    Article  ADS  Google Scholar 

  2. D.A. Nield, A. Bejan, Convection in Porous Media, 3rd edn. (Springer, Berlin, 2006)

    MATH  Google Scholar 

  3. D.B. Ingham, I. Pop (eds.), Transport Phenomena in Porous Media, vol. 3 (Elsevier, Oxford, 2005)

    Google Scholar 

  4. A.V. Kuznetsov (ed.), Handbook of Porous Media (Marcel Dekker, New York, 2000)

    Google Scholar 

  5. A.V. Kuznetsov (ed.), Handbook of Porous Media, 2nd edn. (Taylor & Francis, New York, 2005)

    Google Scholar 

  6. I. Pop, D.B. Ingham, Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media (Pergamon Press, Oxford, 2001)

    Google Scholar 

  7. A. Bejan, I. Dincer, S. Lorente, A.F. Miguel, A.H. Reis, Porous and Complex Flow Structures in Modern Technologies (Springer, New York, 2004)

    Book  Google Scholar 

  8. K. Khanafer, K. Vafai, Double-diffusive mixed convection in a lid-driven enclosure filled with a fluid-saturated porous medium. Numer. Heat Transf. 42, 465–486 (2002)

    Article  Google Scholar 

  9. H. Oztop, Combined convection heat transfer in a porous lid-driven enclosure due to heater with finite length. Int. Commun. Heat Mass Transf. 33, 772–779 (2006)

    Article  Google Scholar 

  10. P. Kandaswamy, M. Muthtamilselvan, J. Lee, Prandtl number effects on mixed convection in a lid-driven porous cavity. J. Porous Media 11, 791–801 (2008)

    Article  Google Scholar 

  11. S. Mahmud, I. Pop, Mixed convection in a square vented enclosure filled with a porous medium. Int. J. Heat Mass Transf. 49, 2190–2206 (2006)

    Article  MATH  Google Scholar 

  12. Hu. Yang, D. Li, S. Shu, X. Niu, Immersed boundary-lattice Boltzmann simulation of natural convection in a square enclosure with a cylinder covered by porous layer. Int. J. Heat Mass Transf. 92, 1166–1170 (2016)

    Article  Google Scholar 

  13. I.V. Miroshnichenko, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Natural convection of alumina-water nanofluid in an open cavity having multiple porous layers. Int. J. Heat Mass Transf. 125, 648–657 (2018)

    Article  Google Scholar 

  14. M. Ghalambaz, M. Sabour, I. Pop, Free convection in a square cavity filled by a porous medium saturated by a nanofluid: viscous dissipation and radiation effects. Eng. Sci. Technol. Int. J. 19(3), 1244–1253 (2016)

    Google Scholar 

  15. F. Selimefendigil, M.A. Ismael, A.J. Chamkha, Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder. Int. J. Mech. Sci. 124–125, 95–108 (2017)

    Article  Google Scholar 

  16. M.A. Ismael, A.J. Chamkha, Conjugate natural convection in a differentially heated composite enclosure filled with a nanofluid. J. Porous Media 18, 699–716 (2015)

    Article  Google Scholar 

  17. Wu. Feng, G. Wang, Numerical simulation of natural convection in an inclined porous cavity under time-periodic boundary conditions with a partially active thermal side wall. RSC Adv. 7(28), 17519–17530 (2017)

    Article  ADS  Google Scholar 

  18. A.I. Alsabery, A.J. Chamkha, H. Saleh, I. Hashim, Natural convection flow of a nanofluid in an inclined square enclosure partially filled with a porous medium. Sci. Rep. 7, 2357 (2017)

    Article  ADS  Google Scholar 

  19. T. Javed, M.A. Siddiqui, Effect of MHD on heat transfer through ferrofluid inside a square cavity containing obstacle/heat source. Int. J. Therm. Sci. 125, 419–427 (2017)

    Article  Google Scholar 

  20. N.S. Gibanov, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid. Int. J. Heat Mass Transf. 114, 1086–1097 (2017)

    Article  Google Scholar 

  21. A.M. Rashad, R.S.R. Gorla, M.A. Mansour, S.E. Ahmed, Magnetohydrodynamics effect on natural convection in a cavity filled porous medium saturated with nanofluid. J. Porous Media 20(4), 363–379 (2017)

    Article  Google Scholar 

  22. R.U. Haq, F.A. Soomro, T. Mekkaoui, Q.M. Al-Mdallal, MHD natural convection flow enclosure in a corrugated cavity filled with a porous medium. Int. J. Heat Mass Transf. 121, 1168–1178 (2018)

    Article  Google Scholar 

  23. M. Sheikholeslami, Z. Li, M. Shamlooei, Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation. Phys. Lett. A 382(24), 1615–1632 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. N.S. Gibanov, M.A. Sheremet, H.F. Oztop, K. Al-Salem, MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid. J. Magn. Magn. Mater. 452, 193–204 (2018)

    Article  ADS  Google Scholar 

  25. K. Ghasemi, M. Siavashi, MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. J. Magn. Magn. Mater. 442, 474–490 (2017)

    Article  ADS  Google Scholar 

  26. K.D. Goswami, A. Chattopadhyay, S.K. Pandit, M.A. Sheremet, Brownian motion of magnetonanofluid flow in an undulated partially heated enclosure. Int. J. Mech. Sci. 198, 106346 (2021)

    Article  Google Scholar 

  27. M. Izadi, H.F. Oztop, M.A. Sheremet, S.A.M. Mehryan, N. Abu-Hamdeh, Coupled FHD–MHD free convection of a hybrid nanoliquid in an inversed T-shaped enclosure occupied by partitioned porous media. Numer. Heat Transf. Part A Appl. 76(6), 479–498 (2019)

    Article  ADS  Google Scholar 

  28. M. Ghalambaz, S.M.H. Zadeh, S.A.M. Mehryan, K.A. Ayoubloo, N. Sedaghatizadeh, Non-Newtonian behavior of an electrical and magnetizable phase change material in a filled enclosure in the presence of a non-uniform magnetic field. Int. Commun. Heat Mass Transf. 110, 104437 (2020)

    Article  Google Scholar 

  29. N.S. Gibanov, M.A. Sheremet, H.F. Oztop, O.K. Nusier, Convective heat transfer of ferrofluid in a lid-driven cavity with a heat-conducting solid backward step under the effect of a variable magnetic field. Numer. Heat Transf. Part A Appl. 72(1), 54–67 (2017)

    Article  ADS  Google Scholar 

  30. M. Sheikholeslami, S.A.M. Mehryan, A. Shafee, M.A. Sheremet, Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity. J. Mol. Liq. 277, 388–396 (2019)

    Article  Google Scholar 

  31. M. Sheikholeslami, A.J. Chamkha, Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer. Heat Transf. A 69, 1186–1200 (2016)

    Article  ADS  Google Scholar 

  32. F. Selimefendigil, H.F. Oztop, Forced convection of ferrofluids in a vented cavity with a rotating cylinder. Int. J. Therm. Sci. 86, 258–275 (2014)

    Article  Google Scholar 

  33. M. Malekan, A. Khosravi, X. Zhao, The influence of magnetic field on heat transfer of magnetic nanofluid in a double pipe heat exchanger proposed in a small-scale CAES system. Appl. Therm. Eng. 146, 146–159 (2019)

    Article  Google Scholar 

  34. E.P. Furlani, Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications (Academic press, Cambridge, 2001)

    Google Scholar 

  35. J. Buongiorno, Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  36. K. Vafai, B. Alazmi, On the linear encroachment in two-immiscible fluid systems in a porous medium. ASME. J. Fluids Eng. 125(4), 738–739 (2003)

    Article  Google Scholar 

  37. B. Alazmi, K. Vafai, Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions. Int. J. Heat Mass Transf. 45(15), 3071–3087 (2002)

    Article  MATH  Google Scholar 

  38. A. Amiri, K. Vafai, Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int. J. Heat Mass Transf. 37(6), 939–954 (1994)

    Article  Google Scholar 

  39. L. Betchen, A.G. Straatman, B.E. Thompson, A nonequilibrium finite-volume model for conjugate fluid/porous/solid domains. Numer. Heat Transf. Part A Appl. 49(6), 543–565 (2006)

    Article  ADS  Google Scholar 

  40. B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11(2), 151–170 (1998)

    Article  ADS  Google Scholar 

  41. V. Bianco, F. Chiacchio, O. Manca, S. Nardini, Numerical investigation of nanofluids forced convection in circular tubes. Appl. Therm. Eng. 29(17–18), 3632–3642 (2009)

    Article  Google Scholar 

  42. F. Garoosi, F. Hoseininejad, M.M. Rashidi, Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids. Energy 109, 664–678 (2016)

    Article  Google Scholar 

  43. R. Ellahi, M. Hassan, A. Zeeshan, Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. Int. J. Heat Mass Transf. 81, 449–456 (2015)

    Article  Google Scholar 

  44. O.C. Zienkiewicz, R.L. Taylor, P. Nithiarasu (eds.), The Finite Element Method for Fluid Dynamics, 7th edn. (Butterworth-Heinemann, Oxford, 2014)

    MATH  Google Scholar 

  45. C.C. Beckermann, S.S. Ramadhyani, R.R. Viskanta, Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure. ASME. J. Heat Transf. 109(2), 363–370 (1987)

    Article  ADS  Google Scholar 

  46. T. Basak, S. Roy, S.K. Singh, I. Pop, Analysis of mixed convection in a lid-driven porous square cavity with linearly heated side wall(s). Int. J. Heat Mass Transf. 53, 1819–1840 (2010)

    Article  MATH  Google Scholar 

  47. K.W. Song, T. Tagawa, Thermomagnetic convection of oxygen in a square enclosure under non-uniform magnetic field. Int. J. Therm. Sci. 125, 52–65 (2018)

    Article  Google Scholar 

  48. A. Tahmasebi, M. Mahdavi, M. Ghalambaz, Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model. Numer. Heat Transf. Part A Appl. 73(4), 254–276 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrokh Mobadersani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mobadersani, F., Rezavand Hesari, A. Investigation of FHD effects on heat transfer in a differentially heated cavity partially filled with porous medium utilizing Buongiorno’s model. Eur. Phys. J. Plus 136, 707 (2021). https://doi.org/10.1140/epjp/s13360-021-01679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01679-3

Navigation