Skip to main content
Log in

Shifted gate electrode of silicon on insulator metal semiconductor FETs to amend the breakdown and transconductance

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Improving the DC and RF characteristics of field-effect devices by simple changes in basic structure is an advantageous electronics research topic which has been more considered in recent years. Mixture of SOI and MES technology with FETs results in SOI-MESFETs with proper electrical characteristics. Here, by changes in basic form of these devices, an efficient structure is introduced which shows enhanced DC and RF specifications. A shift in gate metal from middle of device toward the source region and using a nickel layer inside the drift region are the changes compared to the basic device which are applied to manage the electric field and parasitic capacitances. The resultant device is evaluated in terms of maximum output power density, cutoff frequency, breakdown voltage, maximum oscillation frequency, and stable gains. Simulations show that the proposed device outperforms the conventional structure for evaluated criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S. Cristoloveanu, S.S. Li, Electrical Characterization of SOI Materials and Devices (Kluwer, Norwell, 1995)

    Google Scholar 

  2. M.T. Weber, Analysis of zincblende-phase GaN, cubic-phase SiC, and GaAs MESFETs including a full-band Monte Carlo simulator. Doctoral Dissertation. Georgia Institute of Technology; 2005

  3. A. Balijepalli, R. Vijayaraghavan, J. Ervin, J. Yang, S.K. Islam, T.J. Thornton, Large-signal modeling of SOI MESFETs. Solid-State Electron. 50, 943–950 (2006)

    Article  ADS  Google Scholar 

  4. P. Pandey, B.B. Pal, S. Jit, A new 2-D model for the potential distribution and threshold voltage of fully depleted short channel Si-SOI MESFETs. IEEE Trans. Electron Devices 51, 246–254 (2004)

    Article  ADS  Google Scholar 

  5. W. Lepkowski, J. Ervin, S.J. Wilk, T.J. Thornton, SOI MESFETs fabricated using fully depleted CMOS technologies. IEEE Electron Device Lett. 30, 678–680 (2009)

    Article  ADS  Google Scholar 

  6. J.Y. Spann, J. Anderson, R. Thornton, High-frequency performance of subthreshold SOI MESFETs. IEEE Electron Device Lett. 25, 652–654 (2004)

    Article  ADS  Google Scholar 

  7. A.A. Orouji, Z. Ramezani, P. Keshavarzi, A. Aminbeidokhti, A novel high frequency SOI MESFET by modified gate capacitances. Superlattices Microstruct. 61, 69–80 (2013)

    Article  ADS  Google Scholar 

  8. H. Mohammadi, A. Naderi, A novel SOI-MESFET with parallel oxide-metal layers for high voltage and radio frequency applications. AEU-International Journal of Electronics and Communications 83, 541–548 (2018)

    Article  Google Scholar 

  9. A. Naderi, H. Mohammadi, High breakdown voltage and high driving current in a novel silicon-on-insulator MESFET with high-and low-resistance boxes in the drift region. Eur. Phys. J. Plus 133, 221 (2018)

    Article  Google Scholar 

  10. A.A. Orouji, Z. Ramezani, A.A. Heydari, A novel high-performance SOI MESFET by stopping the depletion region extension. Superlattices Microstruct. 30, 195–207 (2014)

    Article  ADS  Google Scholar 

  11. A.A. Orouji, H. Shahnazarisani, M.K. Anvarifard, Simulation analysis of a novel dual trench structure for a high power silicon-on-insulator metal–semiconductor field effect transistor. Mater. Sci. Semicond. Process. 31, 506–511 (2014)

    Article  Google Scholar 

  12. A. Naderi, F. Heirani, Improvement in the performance of SOI-MESFETs by T-shaped oxide part at channel region: DC and RF characteristics. Superlattices Microstruct. 111, 1022–1033 (2017)

    Article  ADS  Google Scholar 

  13. C.L. Zhu, E. Rusli, J. Almira, C.C. Tin, S.F. Yoon, J. Ahn, Physical simulation of drain-induced barrier lowering effect. Mater. Sci. Forum 483–485, 849–852 (2005)

    Article  Google Scholar 

  14. S.R. Bahl, A. del Alamo, A new drain-current injection technique for the measurement of off-state breakdown voltage in FET’s. IEEE Trans. Electron Devices 40, 1558–1560 (1993)

    Article  ADS  Google Scholar 

  15. C.S. Chang, D.Y. Day, An analytic solution of the two-dimensional Poisson equation and a model of gate current and breakdown voltage for reverse gate–drain bias in GaAs MESFETs. Solid-State Electron. 32, 971–978 (1989)

    Article  ADS  Google Scholar 

  16. H.Y. Cha, Y.C. Choi, L.F. Eastman, M.G. Spencer, Simulation study on breakdown behavior of field-plate SiC MESFETs. Int. J. High Speed Electron. Syst. 14, 884–889 (2004)

    Article  Google Scholar 

  17. H.Y. Cha, C.I. Thomas, Y.C. Choi, L.F. Eastman, M.G. Spencer, Gate field emission induced breakdown in power SiC MESFETs. IEEE Electron Device Lett. 24, 571–573 (2003)

    Article  ADS  Google Scholar 

  18. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken, 2007)

    Google Scholar 

  19. A. Naderi, M. Ghodrati, Improving band-to-band tunneling in a tunneling carbon nanotube field effect transistor by multi-level development of impurities in the drain region. Eur. Phys. J. Plus 132(12), 510 (2017)

    Article  Google Scholar 

  20. D.S. Atlas, Atlas User’s Manual. Santa Clara, CA, USA: Silvaco International Software; 2005

  21. J. Ervin, A. Balijepalli, P. Joshi, V. Kushner, J. Yang, T.J. Thornton, CMOS-compatible SOI MESFETs with high breakdown voltage. IEEE Trans Electron Devices 53(12), 3129–3135 (2006)

    Article  ADS  Google Scholar 

  22. S.M. Sze, Semiconductor Devices, Physics and Technology (Wiley, New York, 2002)

    Google Scholar 

  23. D. J. Y. Jiangang Du, W. H. Ko, Single crystal 6H-SiC MEMS fabrication based on smart-cut technique, J. Micromech. Microeng., 112, 116–121, 2004

  24. J. Singh, Semiconductor Devices: Basic Principles (Wiley, New York, 2000)

    Google Scholar 

  25. H. Elahipanah, Simulation and optimization of high breakdown double-recessed 4H-SiC MESFET with metal plate termination technique. Superlattices Microstruct. 48(6), 529–540 (2010)

    Article  ADS  Google Scholar 

  26. M.K. Anvarifard, Increase in the scattering of electric field lines in a new high voltage SOI MESFET. Superlattices Microstruct. 97, 15–27 (2016)

    Article  ADS  Google Scholar 

  27. H. Jia, H. Zhang, D. Xing, Y. Luo, B. Duan, A novel 4H-SiC MESFET with ultrahigh upper gate. Superlattices Microstruct. 86, 372–378 (2015)

    Article  ADS  Google Scholar 

  28. M.C. Richard, S. Muller, T.I. Kamins, Device Electronics for Integrated Circuits, 3rd edn. (Wiley, New York, 2002)

    Google Scholar 

  29. C.A.C.J.-P. Colinge, Physics of Semiconductor Devices (Springer, Berlin, 2005)

    Google Scholar 

  30. Z. Ramezani, A.A. Orouji, H. Agharezaei, A novel symmetrical 4H–SiC MESFET: an effective way to improve the breakdown voltage. J. Comput. Electron. 15(1), 163–171 (2016)

    Article  Google Scholar 

  31. H.J. Na, J.H. Moon, J.H. Yim, J.B. Lee, H.J. Kim, Fabrication and characterization of 4H-SiC planar MESFETs. Microelectron. Eng. 83(1), 160–164 (2006)

    Article  Google Scholar 

  32. B. Y. B. Bal S. Virdee , Avtar S. Virdee, Broadband Microwave Amplifiers, no. 1. Artech House Microwave Library, 2004.

  33. S. Bose, A. Kumar, M. Gupta, R.S. Gupta, A complete analytical model of GaN MESFET for microwave frequency applications. Microelectron. J. 32(12), 983–990 (2001)

    Article  Google Scholar 

  34. A.A. Orouji, Z. Ramezani, S.M. Sheikholeslami, A novel SOI-MESFET structure with double protruded region for RF and high voltage applications. Mater. Sci. Semicond. Process. 30, 545–553 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Naderi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, A., Mohammadi, H. Shifted gate electrode of silicon on insulator metal semiconductor FETs to amend the breakdown and transconductance. Eur. Phys. J. Plus 136, 662 (2021). https://doi.org/10.1140/epjp/s13360-021-01661-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01661-z

Navigation