Skip to main content
Log in

Penrose instabilities and the emergence of rogue waves in Sasa–Satsuma equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we calculate the region of emergence of rogue waves in the Sasa–Satsuma equation by performing Penrose stability analysis. We consider Wigner-transformed Sasa–Satsuma equation and separate out unstable solutions, namely Penrose instability modes. We superpose these modes in a small region. With the help of marginal property of the Wigner transform, we identify the region in which rogue wave solution can emerge in the Sasa–Satsuma equation and calculate the amount of spatial localization. We also formulate a condition for the emergence of rogue wave solution in the Sasa–Satsuma equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. O. Kimmoun, H.C. Hsu, B. Kibler, A. Chabchoub, Phys. Rev. E 96, 022219 (2017)

    Article  ADS  Google Scholar 

  2. Y.H. Ichikawa, T. Suzuki, T. Taniuti, J. Phys. Soc. Jpn. 34, 1089 (1973)

    Article  ADS  Google Scholar 

  3. D. Mestdagh, Opt. Lett. 13, 829 (1988)

    Article  ADS  Google Scholar 

  4. J. Zhang, L. Wang, C. Liu, Proc. R. Soc. A 473, 20160681 (2017)

    Article  ADS  Google Scholar 

  5. M. Remoissenet, Ann. Telecommun. 51, 7–8 (1996)

    Google Scholar 

  6. O. Penrose, Phys. Fluids 3, 258–265 (1960)

    Article  ADS  Google Scholar 

  7. S.A. Rybak, O.M. Zozulyal, Phys. A 241, 128–132 (1997)

    Article  Google Scholar 

  8. T.B. Benjamin, J.E. Feir, J. Fluid Mech. 27, 417–430 (1967)

    Article  ADS  Google Scholar 

  9. M.J. Lighthill, J. Inst. Math. Appl. 1, 269–306 (1965)

    Article  Google Scholar 

  10. V. E. Zakharov, Zh. Prikl. Mekh. i Teckhn. Fiz. 9, 86-94 (1968). Transl. J. Appl. Mech. and Tech. Phys. 9, 190-194 (1968)

  11. M. Onorato, A.R. Osborne, M. Serio, Phys. Rev. Lett. 96, 014503 (2006)

    Article  ADS  Google Scholar 

  12. N. Akhmediev, A. Ankiewicz, M. Taki, Phys. Lett. A 373, 675–678 (2009)

    Article  ADS  Google Scholar 

  13. A.G. Athanassoulis, G.A. Athanassoulis, T.P. Sapsis, J. Ocean Eng. Mar. Energy 3, 353–372 (2017)

    Article  Google Scholar 

  14. A. Assaubay, A.J. Castro, A.A. Valido, Phys. D Nonlinear Phenom. 411, 132587 (2020)

    Article  Google Scholar 

  15. N. Akhmediev, J.M. Soto-Crespo, N. Devine, N. Hoffmann, Phys. D Nonlinear Phenom. 294, 34–42 (2015)

    Article  Google Scholar 

  16. U. Bandelow, A. Ankiewicz, Sh. Amirananshvilli, N. Akhmediev, Chaos 28, 053108 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. U. Bandelow, N. Akhmediev, Phys. Rev. E 86, 026602 (2012)

    Article  ADS  Google Scholar 

  18. U. Bandelow, N. Akhmediev, Phys. Lett. A 376, 1558–1561 (2012)

    Article  ADS  Google Scholar 

  19. S. Chen, Phys. Rev. E 88, 023202 (2013)

    Article  ADS  Google Scholar 

  20. L. Zhao, S. Li, L. Ling, Phys. Rev. E 93, 032215 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. J.J.C. Nimmo, H. Yilmaz, J. Phys. A Math. Theor. 48, 425202 (2015)

    Article  ADS  Google Scholar 

  22. E. Wigner, Phys. Rev. 40, 749–759 (1932)

    Article  ADS  Google Scholar 

  23. J. Weinbub, D.K. Ferry, Appl. Phys. Rev. 5 (2018)

    Article  ADS  Google Scholar 

  24. W.B. Case, Am. J. Phys. 76, 937–946 (2008)

    Article  ADS  Google Scholar 

  25. A.G. Athanassoulis, Appl. Comput. Harmon. Anal. 24, 378–392 (2008)

    Article  MathSciNet  Google Scholar 

  26. W. Vogel, D.G. Welsch, Quantum Optics (Wiley-WCH, Weinhei, 2009)

    MATH  Google Scholar 

  27. A. G. Athanassoulis, G. A. Athanassoulis, M. Ptashnyk , T. P. Sapsis, arXiv:1808.05191v1 (2018)

  28. G. Mu, Z. Qin, Nonlinear And: Real world Appl. 31, 179 (2016)

    Google Scholar 

  29. G. Mu, Z. Qin, R. Grimshaw, N. Akhmediev, Phys. D 102 (2020)

    Article  Google Scholar 

  30. K.M.M. Prabhu, Taylor and Francis group, USA (2013), pp. 87–126

Download references

Acknowledgements

MP acknowledges the Bharathidasan University, Tiruchirappalli, for providing a University Research Fellowship (URF). NVP wishes to thank IISc, Bangalore, for providing a fellowship in the form of Research Associateship. The work of MS forms part of a research project sponsored by NBHM, Government of India. Funding was provided by National Board for Higher Mathematics (Grant No. 02011/20/2018NBHM(R.P)/R&D 24II/15064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Senthilvelan.

Appendix: Construction of Wigner-SSE

Appendix: Construction of Wigner-SSE

In this Appendix, we formulate Wigner-SSE for Eq. (2) by utilizing Wigner transform and its properties. Using Fourier convolution theorem, we can rewrite the nonlinear terms in the required form. Using Eq. (6), we can rewrite the group velocity dispersion term as

$$\begin{aligned} W[q_{xx},q]-W[q,q_{xx}]=4\pi ik ~W_x[q]. \end{aligned}$$
(40)

Similarly, the third-order dispersive term in (7) (second term) can be rewritten in the form

$$\begin{aligned} W[q_{xxx},q]+W[q,q_{xxx}]=-12\pi ^2k^2 ~W_x + \frac{1}{4} ~W_{xxx}. \end{aligned}$$
(41)

The self-phase modulation term \(T_3\) [third term in Eq. (7)], can also be rewritten in an exact Wigner form with the help of the convolution theorem of Fourier transform (after replacing \(|q|^2=U(x,t)\)), that is

$$\begin{aligned} T_3=\int _{\eta ,s}e^{-2\pi i\eta s}~[U\big (x+\frac{s}{2},t\big ) -U\big (x-\frac{s}{2},t\big )]~\mathrm{d}s~W(x,k-\eta ,t)~\mathrm{d}\eta . \end{aligned}$$
(42)

In the self-frequency shift term \(T_4\) [fourth term in Eq. (7)], we have the spatial derivative of U(xt). We keep this term as it is and rewrite this term as

$$\begin{aligned} T_4=\int _{\eta ,s}e^{-2\pi i\eta s}\Bigg [\frac{\partial U\big (x+\frac{s}{2},t)}{\partial \big (x+\frac{s}{2}\big )}+\frac{\partial U\big (x-\frac{s}{2},t\big )}{\partial \big (x-\frac{s}{2}\big )}\Bigg ]\mathrm{d}s~W(x,k-\eta ,t)\mathrm{d}\eta . \end{aligned}$$
(43)

To rewrite the last term (\(T_5\)), we use the properties (5a) and (6). After imposing these properties and through the convolution, the last term can be brought to the form

$$\begin{aligned} T_5= & {} \int _{\eta ,s}e^{-2\pi i\eta s}\Big [U\big (x+\frac{s}{2},t)-U\big (x-\frac{s}{2},t\big )\Big ]~\mathrm{d}s~2\pi i~(k-\eta )~W(x,k-\eta ,t)~\mathrm{d}\eta \nonumber \\&+\int _{\eta ,s}e^{-2\pi i\eta s}\Big [U\big (x+\frac{s}{2},t)+U\big (x-\frac{s}{2},t\big )\Big ]~\mathrm{d}s\frac{1}{2}~W_x(x,k-\eta ,t)~\mathrm{d}\eta . \end{aligned}$$
(44)

Replacing the right-hand side of Eq. (7) with the above expressions (40)–(44), we obtain the Wigner-SSE which is given in Eq. (8) in Sect. 2 with \(U(x,t)=\displaystyle \int _\varLambda W(x,\varLambda ,t)~\mathrm{d}\varLambda \) owing to the marginal of the Wigner transform.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeepa, M., Vishnu Priya, N. & Senthilvelan, M. Penrose instabilities and the emergence of rogue waves in Sasa–Satsuma equation. Eur. Phys. J. Plus 136, 591 (2021). https://doi.org/10.1140/epjp/s13360-021-01570-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01570-1

Navigation