Skip to main content
Log in

Constructing squeezed states of light with associated Hermite polynomials

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A new class of states of light is introduced that is complementary to the well-known squeezed states. The construction is based on the general solution of the three-term recurrence relation that arises from the saturation of the Schrödinger inequality for the quadratures of a single-mode quantized electromagnetic field. The new squeezed states are found to be linear superpositions of the photon-number states whose coefficients are determined by the associated Hermite polynomials. These results do not seem to have been noticed before in the literature. As an example, the new class of squeezed states includes superpositions characterized by odd-photon number states only, so they represent the counterpart of the prototypical squeezed-vacuum state which consists entirely of even-photon number states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Heisenberg [1], Kennard [7], Condon [8] and Robertson [9] take into account only two of the three quadratic moments that can be associated with two variables. Schrödinger [10] was the first to notice that the covariance \(\sigma _{A,B}\) must be considered together with the variances \((\Delta A)^2\) and \((\Delta B)^2\) in order to better define the lower bound of the uncertainty principle for A and B. Nevertheless, it is a common mistake to quote the main result of the Schrödinger paper [10] as the Schrödinger–Robertson inequality. Throughout this work, we opt by quoting \((\Delta A)^2 (\Delta B)^2 \ge \sigma _{A,B}^2 + \tfrac{1}{4} \vert \langle [A,B] \rangle \vert ^2\) as the Schrödinger inequality.

References

  1. W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927). English translation in NASA Technical Reports Server, Document ID: 19840008978. https://ntrs.nasa.gov/citations/19840008978, consulted (February 2021)

  2. J. Hilgevoord, J. Uffink, The Uncertainty Principle, The Stanford Encyclopedia of Philosophy, Winter 2016. https://plato.stanford.edu/archives/win2016/entries/qt-uncertainty/, consulted (February 2021)

  3. M. Jammer, The Conceptual Development of Quantum Mechanics (McGraw-Hill, New York, 1966); see Ch. 7.1, The Uncertainty Relations

  4. P. Busch, T. Heinoen, P. Lahti, Heisenberg’s uncertainty principle. Phys. Rep. 452, 155 (2007)

    Article  ADS  Google Scholar 

  5. R.F. Werner, T. Farrelly, Uncertainty from Heisenberg to today. Found. Phys. 49, 460 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Mielnik, O. Rosas-Ortiz, Quantum Mechanical Laws, in Fundamentals of Physics, vol. 1, ed. by J.L. Morán-López, P.O. Hess (EOLSS Publishers, Oxford, UK, 2009)

  7. E.H. Kennard, Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 44, 326 (1927)

    Article  ADS  MATH  Google Scholar 

  8. E.U. Condon, Remarks on uncertainty principles. Sicence 69, 573 (1929)

    Article  ADS  Google Scholar 

  9. H.P. Robertson, The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  10. E. Schrödinger, Zum Heisenbergschen Unschärfeprinzip. Proc. Prussian Acad. Sci. 19, 296 (1930)

    MATH  Google Scholar 

  11. W. Heisenberg, Encounters with Einstein and Other Essays of People, Places, and Particles (Princeton University Press, Princeton, 1983), pp. 113–114

    Google Scholar 

  12. O. Rosas-Ortiz, Coherent and squeezed states: introductory review of basic notions, properties and generalizations, in Integrability. ed. by S. Kuru, J. Negro, L.M. Nieto (Supersymmetry and Coherent States, CRM Series in Mathematical Physics, Springer, Cham, Switzerland, 2019)

  13. E. Schrödinger, Der stetige Übergang von der Mikro-zur Makromechanik. Naturwissenschaften 14, 664 (1926)

    Article  ADS  MATH  Google Scholar 

  14. E.C.G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. R.J. Glauber, Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. J.R. Klauder, E.C.G. Sudarshan, Fundamentals of Quantum Optics (W.A. Benjamin Inc, New York, 1968)

    Google Scholar 

  17. R.J. Glauber, Quantum Theory of Optical Coherence, Selected Papers and Lectures (Wiley-VCH, Weinheim, 2007).

    Google Scholar 

  18. J.N. Hollenhorst, Quantum limits on resonant-mass gravitational-radiation detectors. Phys. Rev. D 19, 1669 (1979)

    Article  ADS  Google Scholar 

  19. D.F. Walls, Squeezed states of light. Nature 306, 141 (1983)

    Article  ADS  Google Scholar 

  20. R. Loudon, P.L. Knight, Squeezed light. J. Mod. Opt. 34, 709 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. M.C. Teich, B.E.A. Saleh, Squeezed states of light. Quantum Opt. 1, 153 (1989)

    Article  ADS  Google Scholar 

  22. R. Schnabel, N. Mavalvala, D.E. McClelland, P.K. Lam, Quantum metrology for gravitational wave astronomy. Nat. Commun. 1, 121 (2010)

    Article  ADS  Google Scholar 

  23. L. Barsotti, J. Harms, R. Schnabel, Squeezed vacuum states of light for gravitational wave detectors. Rep. Prog. Phys. 82, 016905 (2019)

    Article  ADS  Google Scholar 

  24. P. Hariharan, Optical Interferometry (Academic Press, San Diego, 2003).

    Google Scholar 

  25. D. Gottesman, J. Preskill, Secure quantum key distribution using squeezed states. Phys. Rev. A 63, 022309 (2001)

    Article  ADS  Google Scholar 

  26. M. Hillery, Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000)

    Article  ADS  Google Scholar 

  27. V.V. Dodonov, V.I. Man’ko, Theory of Nonclassical States of Light (Taylor and Francis, New York, 2003)

    Book  Google Scholar 

  28. P. Marian, Second-order squeezed states. Phys. Rev. A 55, 3051 (1997)

    Article  ADS  Google Scholar 

  29. S. Dey, A. Fring, Squeezed coherent states for noncommutative spaces with minimal length uncertainty relation. Phys. Rev. D 86, 064038 (2012)

    Article  ADS  Google Scholar 

  30. L. Elaihar, W. Koussa, Y. Bouguerra, M. Maamache, Time-dependent non-Hermitian systems: pseudo-squeezed coherent states. J. Phys. A: Math. Theor. 54, 175301 (2021)

    Article  Google Scholar 

  31. R. Askey, J. Wimp, Associated Laguerre and Hermite polynomials. Proc. R. Soc. Edinburgh Sect. A 96, 15 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, in Encyclopedia of Mathematics and Its Applications (Cambridge University Press, Cambdrige, 2005).

    Book  Google Scholar 

  33. R.R. Puri, Minimum-uncertainty states for noncanonical operators. Phys. Rev. A 49, 2178 (1994)

    Article  ADS  Google Scholar 

  34. R. Jackiw, Minimum uncertainty product, number-phase uncertainty product, and coherent states. J. Math. Phys. 9, 339 (1968)

    Article  ADS  MATH  Google Scholar 

  35. D. Stoler, Equivalence classes of minimum uncertainty packets. Phys. Rev. D 1, 3217 (1970)

    Article  ADS  Google Scholar 

  36. E. Merzbacher, Quantum Mechanics, 3rd edn. (Wiley, New York, 1998).

    MATH  Google Scholar 

  37. H.-C. Fu, R. Sasaki, Exponential and Laguerre squeezed states for \(su(1,1)\) algebra and the Calogero-Sutherland model. Phys. Rev. A 53, 3836 (1996)

    Article  ADS  Google Scholar 

  38. M.N. Alvarez, V. Hussin, Generalized coherent and squeezed states based on the \(h(1) \otimes su(2)\) algebra. J. Math. Phys. 43, 2063 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. S. Dey, V. Hussin, Entangled squeezed states in noncommutative spaces with minimal length uncertainty relations. Phys. Rev. D 91, 124017 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. K. Zelaya, S. Dey, V. Hussin, Generalized squeezed states. Phys. Lett. A 382, 3369 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. S. Dey, A. Fring, V. Hussin, A squeezed review on coherent states and nonclassicality for non-hermitian systems with minimal length, in Coherent States and Their Applications, Springer Proceedings in Physics, vol. 205, ed. by J.-P. Antoine et al. (2018)

  42. S. Dey, S.S. Nair, Generalized photon-subtracted squeezed vacuum states. J. Phys. A: Math. Theor. 53, 385305 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  43. G.S. Agarwal, K. Tara, Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492 (1991)

    Article  ADS  Google Scholar 

  44. A. Zavatta, S. Viciani, M. Bellini, Quantum-to-classical transition with single-photon-added coherent states of light. Nature 306, 660 (2004)

    Google Scholar 

  45. K.D. Zelaya, O. Rosas-Ortiz, Optimized binomial quantum states of complex oscillators with real spectrum. J. Phys. Conf. Ser. 698, 012026 (2016)

    Article  Google Scholar 

  46. K. Zelaya, O. Rosas-Ortiz, Z. Blanco-Garcia, S. Cruz y Cruz, Completeness and nonclassicality of coherent states for generalized oscillator algebras. Adv. Math. Phys. 2017, 7168592 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. K. Zelaya, S. Dey, V. Hussin, O. Rosas-Ortiz, Nonclassical states for non-Hermitian Hamiltonians with the oscillator spectrum. Quantum Rep. 2, 12 (2020)

    Article  Google Scholar 

  48. L.M. Milne-Thomson, The Calculus of Finite Differences, 2nd edn. (Chelsea Publishing Company, New York, 1933)

    MATH  Google Scholar 

  49. V.V. Dodonov, I.A. Malkin, V.I. Man’ko, Even and odd coherent states and excitations of a singular oscillator. Physica 72, 597 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  50. C.C. Gerry, Non-classical properties of even and odd coherent states. J. Mod. Opt. 40, 1053 (1993)

    Article  ADS  MATH  Google Scholar 

  51. A. Wünsche, Squeezed coherent states in non-unitary approach and relation to sub- and super-Poissonian statistics. Adv. Pure Math. 7, 706 (2016)

    Article  Google Scholar 

  52. P. Kok, B.W. Lovett, Introduction to Optical Quantum Information Processing (Cambridge University Press, New York, 2010)

    Book  MATH  Google Scholar 

  53. F.W.J. Olvier et al. (eds.), NIST Handbook of Mathematical Functions (Cambridge University Press, New York, 2010)

    Google Scholar 

  54. J.A. Bergou, M. Hillery, D. Yu, Minimum uncertainty states for amplitude-squared squeezing: Hermite polynomial states. Phys. Rev. A 43, 515 (1991)

    Article  ADS  Google Scholar 

  55. S. Datta, R. D’Souza, Generalised quasiprobability distribution for Hermite polynomial squeezed states. Phys. Lett. A 215, 149 (1996)

    Article  ADS  Google Scholar 

  56. H.Y. Fan, X.O. Ye, Z.H. Xu, Laguerre polynomial states in single-mode Fock space. Phys. Lett. A 199, 131 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. J. Plebański, On certain wave packets. Acta Phys. Pol. 14, 275 (1955)

    MathSciNet  MATH  Google Scholar 

  58. J. Plebański, Wave functions of a harmonic oscillator. Phys. Rev. 101, 1825 (1956)

    Article  ADS  Google Scholar 

  59. M.M. Nieto, Displaced and squeezed number states. Phys. Lett. A 229, 135 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. E.P. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  ADS  MATH  Google Scholar 

  61. J. Weinbub, D.K. Ferry, Recent advances in Wigner function approaches. Appl. Phys. Rev. 5, 041104 (2018)

    Article  ADS  Google Scholar 

  62. M. Hillery, R.F. O’Connell, M.O. Scully, E.P. Wigner, Distribution functions in physics: fundamentals. Phys. Rep. 106, 121 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  63. R.W. Spekkens, Negativity and contextuality are equivalent notions of nonclassicality. Phys. Rev. Lett. 101, 020401 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Y.S. Ra, A. Dufour, M. Walschaers et al., Non-Gaussian quantum states of a multimode light field. Nat. Phys. 16, 144 (2020)

    Article  Google Scholar 

  65. A. Erdéryi (ed.), Higher Transcendental Functions, vol. II (McGraw-Hill, New York, 1953)

    Google Scholar 

  66. A. Wünsche, Generalized Hermite polynomials associated with functions of parabolic cylinder. Appl. Math. Comput. 141, 197 (2003)

    MathSciNet  MATH  Google Scholar 

  67. A. Wünsche, Associated Hermite polynomials related to parabolic cylinder functions. Adv. Pure Math. 9, 15 (2019)

    Article  Google Scholar 

  68. T.S. Chihara, An Introduction to Orthogonal Polynomials (Dover Publications Inc., New York, 1978)

    MATH  Google Scholar 

  69. J. Favard, Sur le polynômes de Tchebicheff. Comptes Rendus de l’Académie des Sciences 200, 2052 (1935)

    MATH  Google Scholar 

  70. D.J. Fernández, L.M. Nieto, O. Rosas-Ortiz, Distorted Heisenberg algebra and coherent states for isospectral oscillator Hamiltonians. J. Phys. A: Math. Gen. 28, 2693 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. J.O. Rosas-Ortiz, Fock-Bargman representation of the distorted Heisenberg algebra. J. Phys. A: Math. Gen. 29, 3281 (1996)

    Article  ADS  MATH  Google Scholar 

  72. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    MATH  Google Scholar 

  73. A.P. Prudnikov, Y.A. Brychkov, O.I. Matichev, Integrals and Series (Vol. 2) Special Functions (Gordon and Breach Science Publishing, Amsterdam, 1986).

    Google Scholar 

  74. B. Mielnik, O. Rosas-Ortiz, Factorization: Little or great algorithm? J. Phys. A: Math. Gen. 37, 10007 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. O. Rosas-Ortiz, K. Zelaya, Bi-orthogonal approach to non-Hermitian Hamiltonians with the oscillator spectrum: generalized coherent states for nonlinear algebras. Ann. Phys. 388, 26 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. M.S. Kim, W. Son, V. Buzek, P.L. Knight, Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2002)

    Article  ADS  Google Scholar 

  77. X.-B. Wang, Theorem for the beam-splitter entangler. Phys. Rev. A 66, 024303 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  78. J. Wenger, R. Tualle-Brouri, P. Grangier, Non-Gaussian statistics from individual pulses of squeezed light. Phys. Rev. Lett. 92, 153601–1 (2004)

    Article  ADS  Google Scholar 

  79. S. Olivares, M.G.A. Paris, Squeezed Fock state inconclusive photon subtraction. J. Opt. B: Quantum Semiclass. Opt. 7, S616 (2005)

    Article  ADS  Google Scholar 

  80. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products, 7th edn. (Academic Press, London, 2007)

    MATH  Google Scholar 

  81. W.V. Assche, Orthogonal polynomials, associated polynomials and functions of the second kind. J. Comput. Appl. Math. 37, 237 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  82. S. Belmehdi, On the associated polynomials. J. Comput. Appl. Math. 32, 311 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  83. M. Rahman, The associated classical orthogonal polynomials, in Special Functions 2000: Current Perspective and Future Directions, NATO Science Series (Series II: Mathematics, Physics and Chemistry), vol. 30, ed. by J. Bustoz, M.E.H. Ismail, S.K. Suslov (Springer, Dordrecht, 2001)

  84. G. Szegö, Orthogonal Polynomials (American Mathematical Society, New York, 1959)

    MATH  Google Scholar 

  85. A.J. Jerri, Linear Difference Equations with Discrete Transform Methods (Kluwer Academic Publishers, London, 1996)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research has been funded by Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico, Grant Number A1-S-24569. V. Hussin acknowledges the research Grant received from the Natural Sciences and Engineering Research Council (NSERC) of Canada. K. Zelaya acknowledges the support from the Fonds de recherche du Québec–Nature et technologies (FRQNT), international internship award 210974. K. Zelaya would like to thank Professor Veronique Hussin and the Centre de Recherches Mathématiques for their kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Zelaya.

Appendices

A Variances associated to the squeezed states

Consider the operators \(A=A^{\dagger }\) and \(B=B^{\dagger }\), which act on \({\mathcal {H}}={\text {Span}}\{ \vert n\rangle \}_{n=0}^{\infty }\). Let \(\vert \beta \rangle \in {\mathcal {H}}\) be a solution of the eigenvalue equation

$$\begin{aligned} (A-i\lambda B)\vert \beta \rangle =\beta \vert \beta \rangle \, , \quad \beta =\langle A\rangle -i\lambda \langle B\rangle \in {\mathbb {C}} \, . \end{aligned}$$
(A-1)

The variances of A and B are easily computed using \({\widetilde{A}}=A-\langle A \rangle \) and \({\widetilde{B}}=B-\langle B \rangle \) through

$$\begin{aligned} (\Delta A)^{2}=\langle {\widetilde{A}}^{2}\rangle \, , \quad (\Delta B)^{2}=\langle {\widetilde{B}}^{2}\rangle . \end{aligned}$$
(A-2)

From Eq. (A-1), it follows \({\widetilde{A}}\vert \beta \rangle =i\lambda {\widetilde{B}}\vert \beta \rangle \), so that \(\widetilde{A}^{2}\vert \beta \rangle =i\lambda {\widetilde{A}}{\widetilde{B}}\vert \beta \rangle \). Then,

$$\begin{aligned}&(\Delta A)^{2}\equiv \langle {\widetilde{A}}^{2}\rangle =i\lambda \langle {\widetilde{A}}{\widetilde{B}}\rangle =i\lambda \langle \beta \vert \left( \frac{AB+BA}{2}+\frac{AB-BA}{2}-\langle A\rangle \langle B\rangle \right) \vert \beta \rangle \nonumber \\&\quad =i\lambda \left( \sigma _{A,B}+\frac{i}{2}\vert \langle [A,B]\rangle \vert \right) \, , \end{aligned}$$
(A-3)

where we have used \([A,B]^{\dagger }=-[A,B]\). Considering now the complex number \(\lambda =\vert \lambda \vert e^{i\theta _{\lambda }}\) and \((\sigma _{A,B}+\frac{i}{2}\vert \langle [A,B]\rangle \vert )=(\sigma ^{2}_{A,B}+\frac{1}{4}\vert \langle [A,B]\rangle \vert ^{2}) e^{i\theta _{A,B}}\), we obtain

$$\begin{aligned} (\Delta A)^{2}=\vert \lambda \vert \left( \sigma ^{2}_{A,B}+\frac{1}{4}\vert \langle [A,B]\rangle \vert ^{2}\right) ^{1/2} \, e^{i\left( \frac{\pi }{2}+\phi _{\lambda }+\phi _{A,B}\right) } \, . \end{aligned}$$
(A-4)

The complex phase in (A-4) is fixed by recalling \((\Delta A)^{2}\ge 0\), as \(A=A^{\dagger }\), and the expectation value is computed through regular vectors. Therefore, we find the following relation between the complex phases:

$$\begin{aligned} \frac{\pi }{2}+\phi _{\lambda }+\phi _{A,B}=2n\pi \, , \quad n=0,1,\ldots , \end{aligned}$$
(A-5)

and consequently, the variance for A is reduced to

$$\begin{aligned} (\Delta A)^{2}_{\lambda }=\vert \lambda \vert \left( \sigma ^{2}_{A,B}+\frac{1}{4}\vert \langle [A,B]\rangle _{\lambda }\vert ^{2}\right) ^{1/2}. \end{aligned}$$
(A-6)

The calculations for \((\Delta B)^{2}\) are carried out in a similar way. We multiply \({\widetilde{B}}\) to the left of the eigenvalue equation \({\widetilde{A}} \vert \beta \rangle =i\lambda {\widetilde{B}}\vert \beta \rangle \), and the straightforward calculation, together with the condition for the complex phases in Eq. (A-5), leads to

$$\begin{aligned} (\Delta B)^{2}_{\lambda }=\frac{1}{\vert \lambda \vert }\left( \sigma ^{2}_{A,B}+\frac{1}{4}\vert \langle [A,B]\rangle _{\lambda }\vert ^{2}\right) ^{1/2} \, . \end{aligned}$$
(A-7)

Using \(A=x=\frac{1}{\sqrt{2}}(a^{\dagger }+a)\) and \(B=p=\frac{i}{\sqrt{2}}(a^{\dagger }-a)\) in the above results, we recover Eq. (5).

B Solving recurrence relations by the comparison method

In this appendix, we construct the general solution of recurrence relations before considering the initial conditions. Our approach, hereafter referred to as comparison method, is addressed to determine whether the solutions of two recurrence relations can be paired by assuming that one of the recurrence problems is already solved. We focus on three-term recurrence relations, but the procedure is easily adapted to recurrences having a different number of terms.

Consider the recurrences

$$\begin{aligned} a_{n} f_{n+1}+ b_{n}f_{n}+ d_{n}f_{n-1}=0, \quad a_n, b_n, d_n\in {\mathbb {C}}, \quad n=1,2, \ldots \, , \end{aligned}$$
(B-1)

and

$$\begin{aligned} A_{n} F_{n+1} + B_{n} F_{n} + D_{n} F_{n-1}=0, \quad A_n, B_n, D_n\in {\mathbb {C}}, \quad n=1,2, \ldots \end{aligned}$$
(B-2)

Assuming that the set \(F_n\) defined by (B-2) is already known, we want to determine whether \(f_{n}\) can be written in terms of \(F_{n}\). The affirmative answer depends strictly on the profile and properties of \(F_{n}\).

Let \(h_n\) be a function such that \(f_n= h_n F_n\). Introducing it into Eq. (B-1) and comparing the result with (B-2), we arrive at the relationships

$$\begin{aligned} \frac{h_{n+1}}{h_n}=\frac{A_n b_n}{B_n a_{n}}, \qquad \frac{h_{n+1}}{h_{n}}=\frac{B_{n+1} d_{n+1}}{D_{n+1} b_{n+1}}. \end{aligned}$$
(B-3)

Both equations in (B-3) should lead to the same function \(h_n\), so we impose the compatibility condition

$$\begin{aligned} \frac{A_{n} D_{n+1} b_{n}b_{n+1}}{B_{n} B_{n+1} a_{n}d_{n+1}}=1, \quad n=0,1,2, \ldots \end{aligned}$$
(B-4)

If (B-4) is fulfilled, the auxiliary function is obtained by solving any of the recurrence relations in (B-3). One finds

$$\begin{aligned} h_{n+1}=h_0 \prod _{k=0}^{n}\frac{A_k b_k}{B_k a_k}= h_0 \prod _{k=0}^{n}\frac{B_{k+1} d_{k+1}}{D_{k+1} b_{k+1}}, \quad n=0,1, \ldots , \end{aligned}$$
(B-5)

where \(h_0\) may be determined from the initial conditions through \(f_{n}=h_{n} F_{n}\).

1.1 B-2.1 The three-term recurrence relation of Sect. 2.2

We apply the comparison method to solve the recurrence relation (9) of Sect. 2.2. First we show the way in which the conventional results are recovered and then we obtain more general results.

1.1.1 B-2.1.1 Usual solution

Let us rewrite the recurrence relation (9) as follows:

$$\begin{aligned} P_{n+1}- \alpha P_{n}+ \xi n P_{n-1}=0, \quad n=1,2, \ldots \end{aligned}$$
(B-6)

To apply the comparison method we use \(f_{n}=P_{n}(\alpha ,\xi )\), with \(a_{n}=1\), \(b_n=\alpha \) and \(d_{n}= \xi n\).

Exploring the well-known recurrence relations for the classical orthogonal polynomials [80], we find that the recurrence relation for the Hermite polynomials

$$\begin{aligned} H_{n+1}(z)-2zH_{n}(z)+2nH_{n-1}(z)=0 \, ,\quad n=1,2, \ldots , \end{aligned}$$
(B-7)

is useful in the present case. That is, taking \(F_{n}=H_{n}(z)\), with \(A_{n}=1\), \(B_{n}=-2z\), and \(D_{n}=2n\), the compatibility condition (B-5) is fulfilled with \(z=\alpha /\sqrt{2\xi }\). Therefore, we obtain \(h_{n}=h_0 \left( \frac{\xi }{2}\right) ^{n/2}\).

Now, taking into account the constraint (10), meaning \(P_0 \ne 0\), we may fix \(h_0\) by the initial condition \(P_{0}(\alpha ,\xi )=1\). Therefore, \(f_{n} = h_{n} F_{n}\) yields the well known result \(P_{n}(\alpha ,\xi )=(\xi /2)^{n/2}H_{n}(\alpha /\sqrt{2\xi })\). These roots of the recurrence problem (9)–(10) have been used to recover the expression of the conventional squeezed states \(\vert \alpha , \xi ; + \rangle \) in Eq. (28) of the main text.

1.1.2 B-2.1.2 General solution

Looking for a general solution, one should recall that the confluent hypergeometric function \({}_{1}F_{1}(a,c;z) \equiv M(a,c; z)\), with \(a =-n\) and \(c \ne -m\) yields a polynomial of degree n in z [53] (n and m positive integers). Then, we may wonder whether the solutions of (B-6) can be paired with such polynomials. A first insight is obtained by comparing the confluent hypergeometric recurrence relation

$$\begin{aligned} (c-a) M(a-1,c;z) + (2a-c+ z) M(a,c;z) -a M(a+1,c;z)=0, \quad a=-n, c\ne -m, \end{aligned}$$
(B-8)

with Eq. (B-6) since it makes clear that the compatibility condition (B-4) cannot be achieved. Nevertheless, decoupling (B-6) into even and odd values of n, we, respectively, have

$$\begin{aligned} P_{2n+2} (\alpha ,\xi ) + \left( 4 \xi n + \xi -\alpha ^2 \right) P_{2n} (\alpha ,\xi )+ 4 \xi ^2 n \left( n-\tfrac{1}{2} \right) P_{2n-2} ( \alpha , \xi )=0, \end{aligned}$$
(B-9)

and

$$\begin{aligned} P_{2n+3} (\alpha ,\xi ) + \left( 4 \xi n + 3\xi -\alpha ^2 \right) P_{2n+1} (\alpha , \xi )+ 4 \xi ^2 n \left( n + \tfrac{1}{2} \right) P_{2n-1}(\alpha ,\xi )=0. \end{aligned}$$
(B-10)

These results are now compatible with (B-8) for either \(c=\tfrac{1}{2}\) or \(c= \tfrac{3}{2}\). It is useful to recall the relationship between the confluent hypergeometric function and the Hermite polynomials

$$\begin{aligned} M(-n, \tfrac{1}{2}; x^2)= (-1)^{n} \frac{n!}{(2n)!} H_{2n}(x), \quad M(-n, \tfrac{3}{2}; x^2)= \frac{ (-1)^{n} }{2x} \frac{n!}{(2n+1)!} H_{2n+1}(x). \end{aligned}$$
(B-11)

Thus, in the present case we may consider \(F_n = M(-n,c;z)\) with c equal to either 1/2 or 3/2 in order to get the corresponding auxiliary function (B-5). The latter provides a first solution to the problem. A second solution can be obtained by recalling that the confluent hypergeometric equation admits two linearly independent solutions. Given \(y_1=M(a,c;z)\), the function \(y_4=z^{1-c} e^z M(1-a, 2-c, -z)\) is such that \(W(y_1, y_4) =(1-c) z^{-c} e^z\) [53], so that \(y_1\) and \(y_2\) are linearly independent if \(c\ne 1\). Therefore, if \(f_{2n} = h_{2n} M(-n, \tfrac{1}{2}, z)\) is our first solution, we may write \({{\widetilde{h}}}_{2n} M(1+n, \tfrac{3}{2}, -z)\) for the second one, with \({{\widetilde{h}}}_{2n}\) absorbing the factors \(z^{1/2} e^z\) and being to be determined. In this form, the general solution for the even labels 2n is written as a linear combination of the above functions. The straightforward calculation yields

$$\begin{aligned} P_{2n} = (-2\xi )^{n} \left[ \left( \tfrac{1}{2} \right) _{n} \kappa _{1}\, M \!\left( -n,\tfrac{1}{2}; \tfrac{\alpha ^{2}}{2\xi }\right) + n! \, \widetilde{\kappa }_{1} \, M\! \left( n+1, \tfrac{3}{2};- \tfrac{\alpha ^{2}}{2\xi }\right) \right] , \end{aligned}$$
(B-12)

where the complex-valued coefficients \(\kappa _{1} (\alpha ,\xi )\) and \(\widetilde{\kappa }_{1} (\alpha ,\xi )\) are fixed by the initial conditions. Equivalently, for the odd labels \(2n+1\), we have

$$\begin{aligned} P_{2n+1} = (-2\xi )^{n} \left[ \left( \tfrac{3}{2} \right) _n \kappa _{2} M \! \left( -n,\tfrac{3}{2};\tfrac{\alpha ^{2}}{2\xi }\right) + n! \, \widetilde{\kappa }_{2} M\! \left( n+1,\tfrac{1}{2};-\tfrac{\alpha ^{2}}{2\xi }\right) \right] , \end{aligned}$$
(B-13)

with \(\kappa _{2} (\alpha ,\xi )\) and \(\widetilde{\kappa }_{2} (\alpha ,\xi )\) defined by the initial conditions.

  • Solutions obeying the constraint (10). Taking into account the constraint (10), that is \(P_0 \ne 0\), we may take \(P_{0}(\alpha ,\xi )=1\). Then, \(P_{1}(\alpha ,\xi )=\alpha \), and

    $$\begin{aligned} {\widetilde{\kappa }}_{1} (\alpha ,\xi )= \widetilde{\kappa }_{2} (\alpha ,\xi )=0, \quad \kappa _{1} (\alpha ,\xi )= 1, \quad {\kappa }_{2} (\alpha ,\xi )= \alpha . \end{aligned}$$

    The above results permit to recover the well-known expression of the squeezed states (28).

  • Solutions that do not satisfy the constraint (10). Making \(P^{(2)}_{0}(\alpha ,\xi )=0\) and \(P^{(2)}_{1}(\alpha ,\xi )=1\) we find \({\widetilde{\kappa }}_{1} (\alpha ,\xi )= \widetilde{\kappa }_{2} (\alpha ,\xi )=1\), and

    $$\begin{aligned} \kappa _{1} (\alpha ,\xi )= -M \! \left( 1, \tfrac{3}{2};- \tfrac{\alpha ^{2}}{2\xi } \right) , \quad {\kappa }_{2} (\alpha ,\xi )= \tfrac{\alpha ^2}{\xi } M \! \left( 1, \tfrac{3}{2};- \tfrac{\alpha ^{2}}{2\xi } \right) . \end{aligned}$$

    After some calculations, from the above expressions one arrives at the results presented in Eqs. (32) and (33) of the main text.

C Orthogonal and associated polynomials

Following [81], we consider a set \(\{ p_n(x) \}\) of orthogonal polynomials

$$\begin{aligned} p_n (x) = \gamma _n x^n + \gamma _{n-1} x^{n-1} + \cdots + \gamma _0, \quad \gamma _n >0, \end{aligned}$$

that satisfy the three-term recurrence relation

$$\begin{aligned} x p_n(x) = a_{n+1} p_{n+1} (x) + b_n p_n(x) + a_n p_{n-1}(x), \quad n \ge 0, \end{aligned}$$
(C-1)

with initial values

$$\begin{aligned} p_{-1}(x) =0, \quad p_0(x) =1, \end{aligned}$$
(C-2)

and

$$\begin{aligned} a_n = \frac{\gamma _{n-1}}{\gamma _n} >0, \quad b_n = \int x p_n^2(x) d\mu (x) \in {\mathbb {R}}. \end{aligned}$$
(C-3)

The function \(\mu (x)\) in the recurrence coefficients (C-3) is a probability measure on the real line such that

$$\begin{aligned} \int p_{n}(x)p_{m}(x) d\mu (x)=\delta _{nm}, \quad m, n \ge 0. \end{aligned}$$
(C-4)

Markedly, except for the classical orthogonal polynomials [53], finding the measure \(\mu \) and the solutions \(p_n(x)\) of the system (C-1)–(C-4) represents a formidable amount of work in general. In this respect the Favard’s theorem [69] (see also [68]) is very useful since it states that for the recurrence problem defined by (C-1)–(C-2), there exists a probability measure \(\mu \) so that the recurrence coefficients acquire the form (C-3) and the orthogonality (C-4) is satisfied [81], and vice versa. Therefore, it is natural to concentrate in solving (C-1)–(C-2) and then to allude the Favard’s theorem to ensure orthogonality.

A slight alteration of the three-term recurrence relation (C-1) produces new results. Namely,

$$\begin{aligned} x p_n^{(k)} (x) = a_{n+k+1} p_{n+1}^{(k)} (x) + b_{n+k} p_n^{(k)} (x) + a_{n+k} p_{n-1}^{(k)} (x), \quad n \ge 0, \end{aligned}$$
(C-5)

with

$$\begin{aligned} p_{-1}^{(k)} (x) =0, \quad p_0^{(k)} (x) =1, \end{aligned}$$
(C-6)

defines the kth associated orthogonal polynomials \(p_n^{(k)}(x)\) [81, 82] (associated with the ones with \(k=0\)), also called numerator polynomials [68]. Given k, the set \(\{ p_n^{(k)}(x) \}\) defines a solution of the recurrence relation (C-1) with \(\mu ^{(k)}\) the corresponding measure. (Guidelines for determining \(\mu \) can be found in [68, 83], and references quoted therein.) The associated recurrence problem (C-5)–(C-6) is very useful for the purposes of this work since it permits to avoid the strong restriction \(P_0 \ne 0\) from the constraint (10).

In the main text, we work with (C-1) rewritten in the form: [68, 84]

$$\begin{aligned} p_{n+1}=(x-c_{n})p_{n}-\lambda _{n}p_{n-1}, \quad p_{-1}=0, \quad p_{0}=1, \quad n=0,1,2,\ldots , \end{aligned}$$
(C-7)

where the coefficients \(c_n\) and \(\lambda _n\) are complex in general.

We identify (C-7) with a second-order difference equation [48], so there are two independent solutions for each value of n. If \(p_{n}\) and \(g_{n}\) solve a difference equation, they are independent if

$$\begin{aligned} {\mathcal {C}}(p_n,g_n)= {\text {Det}}\left( \begin{array}{ll} p_{n} \quad &{} g_{n} \\ p_{n+1} \quad &{} g_{n+1} \end{array}\right) \ne 0. \end{aligned}$$
(C-8)

The above determinant is known as the Casorati function [48] and is the discrete version of the Wronskian in differential equations.

Given a first solution \(p_{n}\), a second solution \(g_{n}\) such that \({\mathcal {C}}(p_n,g_n) \ne 0\) may be constructed by reducing the order of the corresponding difference equation [85]. The method is summarized with the algorithm

$$\begin{aligned} \frac{g_{n+1}}{p_{n+1}}=d_{0} + d_1 \sum _{m=0}^{n} \frac{{\mathcal {R}}(m)}{p_{m}p_{m+1}} \, , \quad g_{0}=0 , \quad {\mathcal {R}}(m)=\prod _{k=0}^{m-1}\lambda _k , \end{aligned}$$
(C-9)

with \(d_{0}\) and \(d_{1}\) arbitrary complex constants. Nevertheless, such a method yields unnecessary complications. We circumvent them by considering the additional difference problem

$$\begin{aligned} p_{n+1}^{(1)}=(x-c_{n+1}) p_{n}^{(1)} -\lambda _{n+1}p_{n-1}^{(1)}, \quad p_{-1}^{(1)}=0 \, , \quad p_{0}^{(1)}=1, \quad n=0,1, \ldots , \end{aligned}$$
(C-10)

where \(\lambda _{n}\) and \(c_{n}\) are the same as those defining (C-7). Thus, we pay attention to the associated polynomials \(p_{n}^{(1)} (x)\) of the \(p_n(x)\) that solve (C-7).

Making \(g_{n}=p_{n-1}^{(1)}\), and considering the initial condition \(p_{-1}^{(1)}=0\), produces \(g_{0}=0\), which is the initial condition considered in the algorithm (C-9). Therefore, the difference problem (C-10) acquires the form

$$\begin{aligned} g_{n+1}=(x-c_n)g_{n}-\lambda _n g_{n-1}, \quad g_{0}=0, \quad g_{1}=1. \end{aligned}$$
(C-11)

It is now clear that the associated polynomials \(g_n\) do not satisfy the constraint (10) since \(g_0 =0\). Besides, the Casorati function between \(p_{n}\) and \(g_{n}\) is \(C(p_n,g_n)=\lambda _1\) [81], so these solutions are independent, provided that \(\lambda _1 \ne 0\). That is, the second independent solution \(g_{n}\) given by Eq. (C-9) may be also computed from the recurrence relation (C-11).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelaya, K., Hussin, V. & Rosas-Ortiz, O. Constructing squeezed states of light with associated Hermite polynomials. Eur. Phys. J. Plus 136, 534 (2021). https://doi.org/10.1140/epjp/s13360-021-01536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01536-3

Navigation