Skip to main content
Log in

Magnetocaloric effect in Rashba spin-orbit coupling and Zeeman splitting of a narrow nanowire quantum dot

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we investigate the magnetocaloric effect for narrow nanowire quantum dot based on spin-orbit coupling of the Rashba type. We first present an explicit expression for a one-dimension narrow nanowire quantum dot in the context of spin-orbit coupling effects. We determine the magnetocaloric properties of narrow nanowire quantum dot. Our results show that the entropy change of the system depends on the applied external magnetic field, the angle between magnetic field and the x axis, width of quantum well and also depends on temperature, which affects the motion of the electrons. Also, the entropy change decreases with raising the Rashba coupling at a fixed value of temperature. It oscillates with the angle \(\phi \) and presents two maximum values for one-dimensional spin-orbit-coupled nanowire quantum dot. The main result presented in this work is the relation between the total heat related to the magnetocaloric effect and the width of the quantum well, the angle \(\phi \) and the magnetic field. Our results show that the angle between B and the x axis and width of the quantum well are important parameters to consider in order to find out a good refrigerator material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Trif, V.N. Golovach, D. Loss, Phys. Rev. B 77, 045434 (2008)

    Article  ADS  Google Scholar 

  2. S.I. Erlingsson, J.C. Egues, D. Loss, Phys. Rev. B 82, 155456 (2010)

    Article  ADS  Google Scholar 

  3. S. Antil, M. Kumar, S. Lahon, S. Dahiya, A. Ohlan, R. Punia, A.S. Maan, Phys. B 552, 202 (2019)

    Article  ADS  Google Scholar 

  4. J.C. Egues, G. Burkard, D.S. Saraga, J. Schliemann, D. Loss, Phys. Rev. B 72, 235326 (2005)

    Article  ADS  Google Scholar 

  5. K.D. Petersson, L.W. McFaul, M.D. Schroer, M. Jung, J.M. Taylor, A.A. Houck, J.R. Petta, Nature 490, 380 (2012)

    Article  ADS  Google Scholar 

  6. S. Nadj-Perge, S.M. Frolov, E.P.A.M. Bakkers, L.P. Kouwenhoven, Nat. (Lond.) 468, 1084 (2010)

    Article  ADS  Google Scholar 

  7. S.M. Frolov, J. Danon, S. Nadj-Perge, K. Zuo, J.W.W. van Tilburg, V.S. Pribiag, J.W.G. van den Berg, E.P.A.M. Bakkers, L.P. Kouwenhoven, Phys. Rev. Lett. 109, 236805 (2012)

    Article  ADS  Google Scholar 

  8. K.C. Nowack, F.H.L. Koppens, Yu.V. Nazarov, L.M.K. Vandersypen, Science 318, 1430 (2007)

    Article  ADS  Google Scholar 

  9. S. Gangadharaiah, J. Sun, O.A. Starykh, Phys. Rev. Lett. 100, 156402 (2008)

    Article  ADS  Google Scholar 

  10. M.P. Nowak, B. Szafran, F.M. Peeters, B. Partoens, W.J. Pasek, Phys. Rev. B 83, 245324 (2011)

    Article  ADS  Google Scholar 

  11. Y. Yuan, X. Wang, J. Kosel, J. Sun, Phys. E 114, 113604 (2019)

    Article  Google Scholar 

  12. Y.V. Pershin, J.A. Nesteroff, V. Privman, Phys. Rev. B 69, 121306(R) (2004)

    Article  ADS  Google Scholar 

  13. D. Stepanenko, N.E. Bonesteel, Phys. Rev. Lett. 93, 140501 (2004)

    Article  ADS  Google Scholar 

  14. M.P. Nowak, B. Szafran, Phys. Rev. B 87, 205436 (2013)

    Article  ADS  Google Scholar 

  15. C. Flindt, A.S. Sorensen, K. Flensberg, Phys. Rev. Lett. 97, 240501 (2006)

    Article  ADS  Google Scholar 

  16. P. Debye, Ann. Phys. 81, 1154 (1926)

    Article  Google Scholar 

  17. W.F. Giauque, D.P. Macdougall, J. Am. Chem. Soc. 57, 1175 (1935)

    Article  Google Scholar 

  18. V.K. Pecharsky, K.A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997)

    Article  ADS  Google Scholar 

  19. I.G. Oliveira, P.J. von Ranke, M.E. Massalani, C.M. Chaves, Phys. Rev. B 72, 174420 (2005)

    Article  ADS  Google Scholar 

  20. I.G. Oliveira, D.C. Garcia, P.J. von Ranke, J. Appl. Phys. 102, 73907 (2007)

    Article  Google Scholar 

  21. T.P. Rashid, S. Nallamuthu, K. Arun, I. Curlik, S. Ilkovic, A. Dzubinska, M. Reiffers, R. Nagalakshmi, Eur. Phys. J. Plus 131, 156 (2016)

    Article  Google Scholar 

  22. P.J. von Ranke, Appl. Phys. Lett. 110, 181909 (2017)

    Article  ADS  Google Scholar 

  23. Z.Z. Alisultanov, R.P. Meilanov, L.S. Paixão, M.S. Reis, Phys. E 65, 44 (2015)

    Article  Google Scholar 

  24. M. Azimi, L. Chorotorlisvili, S.K. Mishra, T. Vekua, W. Hübner, J. Berakdar, New J. Phys. 16, 063018 (2014)

    Article  ADS  Google Scholar 

  25. L. Chotorlishvili, M. Azimi, S. Stagraczynski, Z. Toklikishvili, M. Schüler, J. Berakdar, Phys. Rev. E 94, 032116 (2016)

    Article  ADS  Google Scholar 

  26. V. Mehta, R.S. Johal, Phys. Rev. E 96, 032110 (2017)

    Article  ADS  Google Scholar 

  27. F.J. Peña, A. González, A.S. Nunez, P.A. Orellana, R.G. Rojas, P. Vargas, Entropy 19, 639 (2017)

    Article  ADS  Google Scholar 

  28. O.A. Negrete, F.J. Peña, J.M. Florez, P. Vargas, Entropy 20, 557 (2018)

    Article  ADS  Google Scholar 

  29. Y.A. Bychkov, E.I. Rashba, J. Phys. C 17, 6039 (1984)

    Article  ADS  Google Scholar 

  30. M.P. Nowak, B. Szafran, Phys. Rev. B 91, 085102 (2015)

    Article  ADS  Google Scholar 

  31. J. Schliemann, J.C. Egues, D. Loss, Phys. Rev. Lett. 90, 146801 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Rastegar-Sedehi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastegar-Sedehi, H.R. Magnetocaloric effect in Rashba spin-orbit coupling and Zeeman splitting of a narrow nanowire quantum dot. Eur. Phys. J. Plus 136, 514 (2021). https://doi.org/10.1140/epjp/s13360-021-01532-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01532-7

Navigation