Skip to main content
Log in

Lie symmetries, optimal system, group-invariant solutions and dynamical behaviors of solitary wave solutions for a (3+1)-dimensional KdV-type equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Solitary waves are localized gravity waves that preserve their consistency and henceforth their visibility by the properties of nonlinear hydrodynamics. In this present work, numerous group-invariant solutions of the (3+1)-dimensional KdV-type equation are derived with the virtue of Lie symmetry analysis. Also, we obtain the corresponding infinitesimal generators, Lie point symmetries, geometric vector fields, commutator table and a one-dimensional optimal system of subalgebras. In addition, two-dimensional optimal system of subalgebra is also obtained using one-dimensional optimal system. Several interesting symmetry reductions and corresponding group-invariant solutions of the equation are obtained based on a one-dimensional optimal system of subalgebras. These group-invariant solutions include special functions like the WeierstrassZeta function, W-shaped solitons, M-shaped solitons, bright-dark solitons, solitary waves and rogue waves which we furnish for the first time for this equation. The physical interpretation of the obtained solutions is discussed graphically based on numerical simulation through Mathematica. Furthermore, nonlocal conservation laws are studied via the Ibragimov approach for Lie point symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

    MATH  Google Scholar 

  2. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, Berlin, 1991)

    Google Scholar 

  3. G.W. Bluman, S. Kumei, Symmetries and Differential Equations (Springer, Berlin, 1989)

    Book  Google Scholar 

  4. L.V. Ovsiannikov, Group Analysis of Differential Equations (Academic, New York, 1982)

    MATH  Google Scholar 

  5. P.J. Olver, P. Rosenau, Group-invariant solutions of differential equations. SIAM J. Appl. Math. 47, 263–278 (1987)

    Article  MathSciNet  Google Scholar 

  6. N.H. Ibragimov, A new conservation theorem. J. Math. Anal. Appl. 333, 311–328 (2007)

    Article  MathSciNet  Google Scholar 

  7. S.V. Meleshko, Group classification of the equations of two dimensional motions of a gas. J. Appl. Maths. Mech. 58, 629–635 (1994)

    Article  ADS  Google Scholar 

  8. N.H. Ibragimov, M. Torrisi, A. Valenti, Preliminary group classification of equations \( v_{tt} = f(x, v_x ) v_{xx} + g(x, v_x ) \). J. Math. Phys. 32, 2988 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  9. Y. Zhang, W.X. Ma, Rational solutions to a KdV-like equation. Appl. Math. Comp. 256, 252–256 (2015)

    Article  MathSciNet  Google Scholar 

  10. F. Batool, G. Akram, New solitary wave solutions of the time-fractional Cahn-Allen equation via the improved \(\left(\frac{G^{\prime }}{G}\right)\)-expansion method. Eur. Phys. J. Plus 133, 171 (2018)

    Article  Google Scholar 

  11. D.J. Korteweg, G. Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary wave. Philos. Mag. 39, 422–443 (1895)

    Article  MathSciNet  Google Scholar 

  12. A.J. Khattak, A comparative study of numerical solutions of a class of KdV equation. App. Math. Comput. 199, 425–434 (2008)

    Article  MathSciNet  Google Scholar 

  13. S.A. Khuri, Soliton and periodic solutions for higher order wave equations of KdV type. Chaos Solitons Fractals 26, 25–32 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. N.J. Zabusky, M.D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  ADS  Google Scholar 

  15. J.M. Miles, Solitary waves. Ann. Rev. Fluid Mech. 12, 11–43 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  16. O. Darrigol, Worlds of Flow (Oxford University Press, Oxford, 2005)

    MATH  Google Scholar 

  17. R. Hirota, The Direct Method in Soliton Theory, 155 (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  18. M. Wang, Y. Zhou, Z. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996)

    Article  ADS  Google Scholar 

  19. A. Biswas, D. Milovic, Bright and dark solitons of the generalized nonlinear Schrödinger’s equation. Commun. Nonlinear Sci. Numer. Simul. 15, 1473–1484 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. N.A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals 24, 1217–1231 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Lakshmanan, P. Kaliappan, Lie transformations, nonlinear evolution equations, and Painlevé forms. J. Math. Phys. 24, 795–806 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Kumar, R. Kumar, A. Kumar, On similarity solutions of Zabolotskaya-Khokhlov equation Comput. Math. Appl. 68, 454–463 (2018)

    MATH  Google Scholar 

  23. M. Xu, M. Jia, Exact solutions, symmetry reductions, painlevé test and Bäcklund transformations of a coupled KdV equation. Commun. Theor. Phys. 68, 417–444 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Kumar, D. Kumar, Solitary wave solutions of (3+1)-dimensional extended Zakharov-Kuznetsov equation by Lie symmetry approach Comput. Math. Appl. 77(8), 2096–2113 (2019)

    MathSciNet  MATH  Google Scholar 

  25. S. Kumar, D. Kumar, A.M. Wazwaz, Group invariant solutions of (3+1)-dimensional generalized B-type Kadomstsev Petviashvili equation using optimal system of Lie subalgebra. Phys. Scr. 94 (2019)

  26. D. Kumar, S. Kumar, Some new periodic solitary wave solutions of (3+1)-dimensional generalized shallow water wave equation by Lie symmetry approach. Comput. Math. Appl. 78, 857–877 (2019)

    Article  MathSciNet  Google Scholar 

  27. S. Kumar, A. Kumar, H. Kharbanda, Lie symmetry analysis and generalized invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations. Phys. Scr. 95 (2020)

  28. D.V. Tanwar, A.M. Wazwaz, Lie symmetries and dynamics of exact solutions of dissipative Zabolotskaya-Khokhlov equation in nonlinear acoustics. Eur. Phys. J. Plus 135, 520 (2020)

    Article  Google Scholar 

  29. S.Y. Lou, Dromion like structures in a (3 + 1) dimensional KdV-type equation. J. Phys. A Math. Gen. 29, 5989–6001 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  30. A.M. Wazwaz, Soliton solutions for two (3+1)-dimensional non-integrable KdV-type equations. Math. Comp. Mod. 55, 1845–1848 (2012)

    Article  MathSciNet  Google Scholar 

  31. W. Hereman, A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 43, 13–27 (1997)

    Article  MathSciNet  Google Scholar 

  32. Ö. Ünsal, Complexiton solutions for (3+1)-dimensional KdV-type equation. Comp. Math. Appl. 75(7), 2466–2472 (2018)

    Article  MathSciNet  Google Scholar 

  33. N. Liu, Y. Liu, Homoclinic breather wave, rouge wave and interaction solutions for a (3+1)-dimensional KdV-type equation. Phys. Scr. 94 (2018)

  34. J.J. Mao, S.F. Tian, T.T. Zhang, Rogue waves, homoclinic breather waves and soliton waves for a (3+1)-dimensional nonintegrable KdV-type equation. Int. J. Numer. Method H 29, 763–772 (2019)

    Article  Google Scholar 

  35. A.M. Wazwaz, New solutions for two integrable cases of a generalized fifth-order nonlinear equation. Mod. Phys. Lett. B 29, 1550065 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. X. Hu, Y. Li, Y. Chen, A direct algorithm of one dimensional optimal system for the group invariant solutions. J. Math. Phys. 56 (2015)

  37. P. Satapathy, T.R. Sekhar, Optimal system, invariant solutions and evolution of weak discontinuity for isentropic drift flux model. Appl. Math. Comp. 334, 107–116 (2018)

    Article  MathSciNet  Google Scholar 

  38. N.H. Ibragimov, Nonlinear self-adjointness and conservation laws. J. Phys. A Math. Theor. 44 (2011)

  39. G. Dieu-donne, C.G.L. Tiofack, A. Seadawy et al., Propagation of W-shaped, M-shaped and other exotic optical solitons in the perturbed Fokas-Lenells equation. Eur. Phys. J. Plus 135, 371 (2020)

    Article  Google Scholar 

  40. S. Kumar, D. Kumar, A. Kumar, Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation. Chaos Soliton Fractals 142 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Ethics declarations

Conflict of interest

None.

Appendix I

Appendix I

$$\begin{aligned} A= \left( \begin{array}{cccccccccc} 1 &{} A_{12} &{} -\epsilon _3 &{} \frac{1}{4} e^{\epsilon _5/2} \epsilon _4 &{} 0 &{} A_{16} &{} A_{17} &{} A_{18} &{} \frac{\epsilon _9}{4} &{} A_{110}\\ 0 &{} e^{\frac{\epsilon _5-\epsilon _1}{4}} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} A_{32} &{} e^{\epsilon _1} &{} 0 &{} 0 &{} \frac{1}{20} (-3) e^{\epsilon _1+\epsilon _5} \epsilon _4^2 &{} A_{37} &{} 0 &{} 0 &{} A_{310} \\ 0 &{} A_{42} &{} 0 &{} e^{\frac{\epsilon _5-\epsilon _1}{2}} &{} 0 &{} -e^{\frac{\epsilon _5-\epsilon _1}{2}} \epsilon _7 &{} A_{38} &{} A_{48} &{} 0 &{} A_{410} \\ 0 &{} A_{52} &{} 0 &{} -\frac{1}{2} e^{\epsilon _5/2} \epsilon _2 &{} 1 &{} \frac{1}{2} e^{\epsilon _5/2} \epsilon _2 \epsilon _7-\epsilon _6 &{} -\frac{\epsilon _7}{2} &{} A_{58} &{} \frac{3 \epsilon _9}{4} &{} A_{510} \\ 0 &{} \frac{e^{\epsilon _5} \epsilon _9}{10} &{} 0 &{} 0 &{} 0 &{} e^{\epsilon _5} &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} \frac{1}{6} e^{\frac{\epsilon _1+\epsilon _5}{2}} \epsilon _8 &{} 0 &{} 0 &{} 0 &{} 0 &{} e^{\frac{\epsilon _1+\epsilon _5}{2}} &{} 0 &{} 0 &{} A_{710} \\ 0 &{} A_{82} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} A_{88} &{} 0 &{} A_{810} \\ 0 &{} A_{92} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \frac{1}{10} (-3) e^{-\frac{\epsilon _1}{4}-\frac{\epsilon _5}{4}} \epsilon _4 &{} A_{98} &{} A_{910} \\ 0 &{} \frac{1}{20} e^{\frac{\epsilon _1+\epsilon _5}{4}} \epsilon _4 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} A_{1010} \\ \end{array} \right) \end{aligned}$$
(170)

where \(A_{ij}\) are given below

$$\begin{aligned} A_{12}&=\frac{18 e^{\epsilon _5} \epsilon _3 \epsilon _9 \epsilon _4^2+15 e^{\epsilon _5/2} (\epsilon _{10}-4 \epsilon _3 \epsilon _8-2 \epsilon _7 \epsilon _9) \epsilon _4+300 e^{\epsilon _5/4} \epsilon _2-100 \epsilon _7 \epsilon _8}{1200}, \\ A_{52}&=\frac{1}{120} \left( -30 e^{\epsilon _5/4} \epsilon _2-3 e^{\epsilon _5/2} (\epsilon _{10}-2 \epsilon _7 \epsilon _9) \epsilon _2-2 (5 \epsilon _7 \epsilon _8+6 \epsilon _6 \epsilon _9)\right) , \end{aligned}$$
$$\begin{aligned} \begin{aligned} A_{16}&=\frac{3}{20} e^{\epsilon _5} \epsilon _3 \epsilon _4^2-\frac{1}{4} e^{\epsilon _5/2} \epsilon _4 \epsilon _7, \\ A_{17}&=\frac{1}{10} \left( -3 e^{\epsilon _5/2} \epsilon _3 \epsilon _4-5 \epsilon _7\right) , \\ A_{18}&= \frac{3}{40} \left( 10 \epsilon _8+e^{\epsilon _5/2} \epsilon _4 \epsilon _9\right) , \\ A_{42}&=\frac{1}{20} e^{\frac{\epsilon _5-\epsilon _1}{2}} (\epsilon _{10}-(\epsilon _3+\epsilon _4) \epsilon _8-2 \epsilon _7 \epsilon _9), \\ A_{58}&= \frac{1}{20} \left( 5 \epsilon _8-3 e^{\epsilon _5/2} \epsilon _2 \epsilon _9\right) ,\\ A_{82}&=-\frac{1}{60} e^{-\frac{3 \epsilon _1}{4}-\frac{\epsilon _5}{4}} \left( 3 e^{\epsilon _5/2} \epsilon _3 \epsilon _4+10 \epsilon _7\right) , \\ A_{98}&= e^{-\frac{\epsilon _1}{4}-\frac{3 \epsilon _5}{4}}, \\ A_{110}&=\frac{1}{20} \left( -6 e^{\epsilon _5/2} \epsilon _3 \epsilon _4 \epsilon _9-5 (\epsilon _{10}+4 \epsilon _3 \epsilon _8+2 \epsilon _7 \epsilon _9)\right) ,\\ A_{310}&= e^{\epsilon _1} \epsilon _8+\frac{3}{10} e^{\epsilon _1+\frac{\epsilon _5}{2}} \epsilon _4 \epsilon _9, \\ A_{410}&= \frac{-3}{10} e^{\frac{\epsilon _5-\epsilon _1}{2}} (\epsilon _3+\epsilon _4) \epsilon _9, \\ \end{aligned} \begin{aligned} A_{32}&=\frac{1}{20} e^{\epsilon _1+\frac{\epsilon _5}{2}} \epsilon _4 \epsilon _8-\frac{3}{200} e^{\epsilon _1+\epsilon _5} \epsilon _4^2 \epsilon _9, \\ A_{37}&=\frac{3}{10} e^{\epsilon _1+\frac{\epsilon _5}{2}} \epsilon _4, \\ A_{38}&= \frac{-3}{10} e^{\frac{\epsilon _5-\epsilon _1}{2}} (\epsilon _3+\epsilon _4), \\ A_{48}&= \frac{3}{10} e^{\frac{\epsilon _5-\epsilon _1}{2}} \epsilon _9, \\ A_{88}&= e^{-\frac{3 \epsilon _1}{4}-\frac{\epsilon _5}{4}}, \\ A_{92}&=\frac{1}{20} e^{-\frac{\epsilon _1}{4}-\frac{3 \epsilon _5}{4}} \left( e^{\epsilon _5/2} \epsilon _4 \epsilon _7-2 \epsilon _6\right) , \\ A_{510}&= \frac{1}{4} (\epsilon _{10}-2 \epsilon _7 \epsilon _9), \\ A_{710}&= e^{\frac{\epsilon _1+\epsilon _5}{2}} \epsilon _9,\\ A_{810}&= -e^{-\frac{3 \epsilon _1}{4}-\frac{\epsilon _5}{4}} \epsilon _3,\\ A_{910}&= -e^{-\frac{\epsilon _1}{4}-\frac{3 \epsilon _5}{4}} \epsilon _7, \\ A_{1010}&= e^{\frac{\epsilon _1-\epsilon _5}{4}}. \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kumar, D. & Wazwaz, AM. Lie symmetries, optimal system, group-invariant solutions and dynamical behaviors of solitary wave solutions for a (3+1)-dimensional KdV-type equation. Eur. Phys. J. Plus 136, 531 (2021). https://doi.org/10.1140/epjp/s13360-021-01528-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01528-3

Navigation