Skip to main content
Log in

U(5) and O(6) shape phase transitions via E(5) inverse square potential solutions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The inverse square potential is used to provide the ‘pictures’ of the transitions symmetry from U(5) to O(6) via the variational procedure of the E(5) solutions. The variation of the single-parameter \(\beta _{0}\) of the inverse square potential shifts the E(5) solutions: the energy eigenvalues increase when \(\beta _{0}\) increases. In the theoretical prediction of \(R_{L/2}\), \(\beta _{0}=0\) yields solutions that correspond to the U(5) symmetry of the Bohr Hamiltonian with \(R_{4/2}=2.00\). As \(\beta _{0}\) increases, the solutions of E(5) materialize with \(R_{4/2}=2.189\) at \(\beta _{0,max}=3.986\). The solutions leave E(5) and approach O(6) with \(R_{4/2}=2.466\) at \(\beta _{0}=25\). The solutions of \(^{132}Xe\) and \(^{134}Xe\) of the E(5) symmetry candidates are fitted and compared with the available experimental values. With the same variational method, the ratios of B(E2) transition rates within the ground state leave O(6) and approach E(5) solution as \(\beta _{0}\) increases.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Iachello, Dynamic symmetries at the critical point. Phys. Rev. Lett. 85(17), 3580 (2000)

    Article  ADS  Google Scholar 

  2. F. Iachello, Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. Phys. Rev. Lett. 87(5), 052502 (2001)

    Article  ADS  Google Scholar 

  3. V.N. Zamfir, R.F. Casten, Phase/shape transitions in nuclear. Proc. Romanian Acad. Ser. A 4, 1–9 (2003)

    Google Scholar 

  4. R.F. Casten, Nuclear Structure from a Simple Perspective (Oxford University Press, Oxford, 1990)

    Google Scholar 

  5. R.F. Casten, N.V. Zamfir, Evidence for a possible \(E(5)\) symmetry in Ba-134. Phys. Rev. Lett. 85, 3584–3587 (2000)

    ADS  Google Scholar 

  6. J.M. Arias, \(E(2)\) Transitions and quadrupole moments in the \(E(5)\) symmetry. Phys. Rev. C 63, 034308 (2001)

    ADS  Google Scholar 

  7. R.M. Clark, M. Cromaz, M.A. Deleplanque, M. Descovich, R.M. Diamond, P. Fallon, I.Y. Lee, A.O. Macchiavelli, H. Mahmud, E. Rodriguez-Vieitez, F.S. Stephens, D. Ward, Searching for \(E(5)\) Behavior in Nuclei. Phys. Rev. C 69, 064322 (2004)

    ADS  Google Scholar 

  8. R. Fossion, D. Bonatsos, G.A. Lalazissis, \(E(5)\), \(X(5)\) and prolate to oblate shape phase transitions in relativistic Hartree–Bogoliubov theory. Phys. Rev. C 73, 044310 (2006)

    ADS  Google Scholar 

  9. R. Rodríguez-Guzmán, P. Sarriguren, \(E(5)\) and \(X(5)\) shape phase transitions within a Skyrme–Hartree–Fock \(+\) BCS approach. Phys. Rev. C 76, 064303 (2007)

    ADS  Google Scholar 

  10. M.W. Kirson, Comment on searching for \(E(5)\) behavior in nuclei. Phys. Rev. C 70, 049801 (2004)

    ADS  Google Scholar 

  11. Z.P. Li, T. Niksic, D. Vretenar, J. Meng, G.A. Lalazissis, P. Ring, Microscopic analysis of nuclear quantum phase transitions in the N \( \approx 90\) region. Phys. Rev. C 79, 054301 (2009)

    ADS  Google Scholar 

  12. T. Naz, G.H. Bhat, S. Jehangir, S. Ahmad, J.A. Sheikh, Microscopic description of structural evolution in Pd, Xe, Ba, Nd, Sm, Gd and Dy Isotopes. Nucl. Phys. A 979, 1–20 (2018)

    Article  ADS  Google Scholar 

  13. V.N. Zamfir, M.A. Caprio, R.F. Casten, C.J. Barton, C.W. Beausang, Z. Berant, D.S. Brenner, W.T. Chou, J.R. Cooper, A.A. Hecht, R. Krücken, H. Newman, J.R. Novak, N. Pietralla, A. Wolf, K.E. Zyromski, \(^{102}Pd\): An \(E(5)\) Nucleus? Phys. Rev. C 65, 044325 (2002)

    ADS  Google Scholar 

  14. P. Baras, J.A. Golstein, Remarks on the Inverse Square Potential. North-Holland Math. Stud. 31–35 (1984)

  15. D. Bouaziz, T. Birkandan, Singular inverse square potential in coordinate space with a minimal length. Ann. Phys. 387, 62–74 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A.M. Essin, D.J. Griffiths, Quantum mechanics of the \(\dfrac{1}{x^{2}}\) potential. Am. J. Phys. 74(2), 109 (2006)

    ADS  Google Scholar 

  17. R.P. Martínez-y-Romero, H.N. Núñez-Yépez, A.L. Salas-Brito, The Two Dimensional Motion of a Particle in an Inverse Square Potential: Classical and Quantum Aspects. J. Math. Phys. 54(5), 053509 (2013)

  18. V.M. Vasyuta, V.M. Tkachuk, Falling of a quantum particle in an inverse square attractive potential. Eur. Phys. J. D 70, 267 (2016)

    Article  ADS  Google Scholar 

  19. A. Bohr, B. Mottelson, Kgl. Danske Videnskab Selskab Mat. Fys. Medd. 27(16) (1953)

  20. A. Bohr, Kgl. Danske Videnskab Selskab Mat.-Fys. Medd. 26(14) (1953)

  21. A. Bohr, B.R. Mottelson, Nuclear Structure and Nuclear Deformations, vol. 748 (W. A. Benjamin Inc, Reading, Massachusetts, 1975), pp. 37–50

    Google Scholar 

  22. B. Podolsky, Quantum mechanically correct form of Hamiltonian function for conservative systems. Phys. Rev. 32, 812 (1928)

    Article  ADS  MATH  Google Scholar 

  23. A. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 26(14) (1952)

  24. D. Bonatsos, D. Lenis, N. Minkov, P.P. Raychev, P.A. Terziev, Sequence of potentials interpolating between the \(U(5)\) and \(E(5)\) symmetries. Phys. Rev. C 69, 044316 (2003a)

    ADS  Google Scholar 

  25. D. Bonatsos, P.E. Georgoudis, D. Lennis, N. Minkov, C. Quesne, Fixing the moment of inertial in the Bohr Hamiltonian through supersymmetric quantum mechanics. Phys. Lett. A 683(3), 264–269 (2010)

    Article  Google Scholar 

  26. L. Fortunato, Exact solutions of the Bohr Hamiltonian and symmetries of the collective model. Nuclear Theory 24, 280–294 (2005)

    Google Scholar 

  27. L. Wilets, M. Jean, Surface oscillations in even–even nuclei. Phys. Rev. 102, 3 (1956)

    Article  MATH  Google Scholar 

  28. D.R. Bés, The \(\gamma \)-dependent part of the wave functions representing \(\gamma \)-unstable surface vibration. Phys. Lett. B 10(1), 1–708 (1959)

    Google Scholar 

  29. F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987)

    Book  Google Scholar 

  30. I.S. Gradshteyn, I.M. Ryzhik, Table of Integral Series and Products (Academic, New York, 1980)

    MATH  Google Scholar 

  31. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)

    MATH  Google Scholar 

  32. M. Alimohammadi, H. Hassanabadi, \(\gamma \)-Rigid regime of the Bohr-Mottelson Hamiltonian in energy-dependent approach. Int. J. Mod. Phys. E 25(1650087), 9–11 (2016)

    Google Scholar 

  33. M. Alimohammadi, H. Hassanabadi, Alternative solution of the \(\gamma \)-rigid Bohr Hamiltonian in minimal length formalism. Nucl. Phys. A 957, 439–449 (2016)

    ADS  Google Scholar 

  34. D. Bonatsos, D. Lenis, N. Minkov, P.P. Raychev, P.A. Terziev, Ground State Bands of the \(E(5)\) and \(X(5)\) Critical Symmetries Obtained from Davidson Potentials through a Variational Procedure. Physics Letter B 584, 1–2 (2003b)

    Google Scholar 

  35. R. Budaca, Bohr Hamiltonian with an energy dependent \(\gamma \)-unstable coulomb-like potential. Eur. Phys. J. A 52, 314 (2017)

    ADS  Google Scholar 

  36. C. Hutter, R. Krücken, A. Aprahamian, C.J. Barton, C.W. Beausang, M.A. Caprio, R.F. Casten, W.T. Chou, R.M. Clark, D. Cline, J.R. Cooper, M. Cromaz, A.A. Hecht, A.O. Macchiavelli, N. Pietralla, M. Shawcross, M.A. Stoyer, C.Y. Wu, N.V. Zamfir, \(B(E2)\) Values and the search for the critical point symmetry \(X(5)\) in \(^{104}Mo\) and \(^{106}Mo\). Phys. Rev. C 67, 054315 (2003)

    ADS  Google Scholar 

  37. I. Inci, D. Bonatsos, I. Boztosun, Electric Quadrupole Transitions of the Bohr Hamiltonian with the Morse Potential. Phys. Rev. C 84, 024309 (2011)

    Article  ADS  Google Scholar 

  38. B. Singh, Nucl. Data Sheets 93(1), 1–242 (2001)

    Article  ADS  Google Scholar 

  39. Yu. Khazov, A.A. Rodionov, S. Sakharov, B. Singh, Nuclear Data Sheets 104, 497 (2005)

    Article  ADS  Google Scholar 

  40. L. Fortunato, Solutions of the Bohr Hamiltonian, a Compendium. Eur. Phys. J. A 26, 1–30 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  41. U. Kneissl, Key Topics in Nuclear Structures, Covello, A. (Ed.) (Paestum, World Scientific, Singapore, 2004), p. 399

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Oyewumi.

Appendix A: Mathematical procedure for calculating B(E2) transition probabilities

Appendix A: Mathematical procedure for calculating B(E2) transition probabilities

The B(E2) transition rates are given as

$$\begin{aligned}&B(E2;\varrho _{i}L_{i}\longrightarrow \varrho _{f}L_{f}) =\dfrac{1}{2L_{i}+1}|\left\langle \varrho _{f}L_{f}||T^{E2}|| \varrho _{i}L_{i}\right\rangle |^{2} \end{aligned}$$
(A1)
$$\begin{aligned}&=\dfrac{2L_{f}+1}{2L_{i}+1} B(E2;\varrho _{f}L_{f}\longrightarrow \varrho _{i}L_{i}) , \end{aligned}$$
(A2)

where L is the angular momentum, \(\varrho \) is another quantum number different from L, i denotes initial state, f denotes final state and \(T^{E2}\) is the quadrupole operator which has been defined as [29]

$$\begin{aligned} T^{E2}_{\mu }= t\alpha _{\mu }=t\beta \left[ D_{\mu ,0}^{(2)}(\theta _{i})cos\gamma + \dfrac{1}{\sqrt{2}}(D_{\mu ,2}^{(2)}(\theta _{i}) + D_{\mu ,-2}^{(2)}(\theta _{i}))sin \gamma \right] . \end{aligned}$$
(A3)

\(\theta _{i}\), \(\gamma \) and \(\beta \) have been defined in the manuscript. t is a scale factor and \(D(\theta _{i})\) represent the Wigner functions of the Euler angle. By following the procedures listed in [29],

$$\begin{aligned} B(E2; L_{n_{\beta },\tau }\longrightarrow (L+2)_{n_{\beta }^{\prime },\tau +1})=\dfrac{(\tau +1)(4\tau +5)}{(2\tau +5)(4\tau +1)}t^{2}I^{2}_{n_{\beta }^{\prime }+1;n_{\beta },\tau } \qquad ; L=2\tau , \end{aligned}$$
(A4)

and

$$\begin{aligned}&B(E2; (L+2)_{n_{\beta }^{\prime },\tau +1}\longrightarrow L_{n_{\beta },\tau })=\dfrac{\tau +1}{2\tau +5}t^{2}I^{2}_{n_{\beta }^{\prime }+1;n_{\beta },\tau } \qquad \qquad \qquad ; L=2\tau . \end{aligned}$$
(A5)
$$\begin{aligned}&I_{n_{\beta }^{\prime }+1;n_{\beta },\tau } = \int _{\beta _{0}=0}^{\beta _{0}=\beta _{\omega }}\beta R_{n_{\beta }^{\prime },\tau +1}(\beta ) R_{n_{\beta },\tau }(\beta )\beta ^{4} d\beta \quad \forall \quad \beta _{\omega }>0, \end{aligned}$$
(A6)

\(R_{n_{\beta },\tau }(\beta )\) are the wavefunctions which have been obtained, \(n_{\beta }^{\prime }=s^{\prime }-1\) as \(n_{\beta } = s-1\) which involve Bessel functions of the wavefunctions. All transitions are normalized to \(B(E2 : 2_{0,1}\longrightarrow 0_{0,1} ) = 100\). The lowest B(E2) ratios within the gsb band is

$$\begin{aligned} \dfrac{B(E2; (L+2)_{n_{\beta },\tau +1}\longrightarrow L_{n_{\beta },\tau })}{B(E2; 2_{0,1}\longrightarrow 0_{0,0})} = \dfrac{B(E2; L_{i}\longrightarrow L_{f})}{B(E2, 2_{g}\longrightarrow 0_{g})}= \dfrac{(\tau +1)}{(2\tau +5)}(2n_{\beta }+2\tau +5); \qquad L=2\tau . \end{aligned}$$
(A7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajulo, K.R., Oyewumi, K.J., Oyun, O.S. et al. U(5) and O(6) shape phase transitions via E(5) inverse square potential solutions. Eur. Phys. J. Plus 136, 500 (2021). https://doi.org/10.1140/epjp/s13360-021-01451-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01451-7

Navigation