Skip to main content

Advertisement

Log in

Elemental mapping of Portuguese ceramic pieces with a full-field XRF scanner based on a 2D-THCOBRA detector

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we present a novel application of the full-field energy-dispersive X-ray fluorescence (EDXRF) imaging system based on a MicroPattern Gaseous Detector (2D-THCOBRA) in the cultural heritage field. The detector has an intrinsic imaging capability with spatial resolution of \(400\,{\upmu }\mathrm { m}\ \mathrm {FWHM}\), and is energy sensitive, presenting an energy resolution of approximately \(1\ \mathrm {keV\ FWHM}\) at \(5.9\ \mathrm {keV}\). The full-field XRF scanner based on the 2D-THCOBRA detector allows mapping the distribution of elements in large area samples with high detection efficiency (\(75\%\) at \(5.9\ \mathrm {keV}\)), being a very promising choice for elemental mapping analysis of large area cultural heritage samples. In this work, we have demonstrated the imaging capabilities of the full-field XRF scanner and used it to assess the restoration of a Portuguese faience piece.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.V. de J. Mangueze, M.F.G. Pessoa, M.J. Silva, A. Ndayiragije, H.E. Magaia, V.S.I. Cossa, F.H. Reboredo, M.L. Carvalho, J.P. Santos, M. Guerra, A.I. Ribeiro-Barros, F.C. Lidon, J.C. Ramalho, Simultaneous zinc and selenium biofortification in rice. Accumulation, localization and implications on the overall mineral content of the flour. J. Cereal Sci. 82, 34–41 (2018). https://doi.org/10.1016/j.jcs.2018.05.005

    Article  Google Scholar 

  2. S. Komatani, T. Aoyama, T. Nakazawa, K. Tsuji, Comparison of SEM-EDS, Micro-XRF and confocal Micro-XRF for electric device analysis. e-J. Surf. Sci. Nanotechnol. 11, 133–137 (2013). https://doi.org/10.1380/ejssnt.2013.133

    Article  Google Scholar 

  3. R.G. Figueroa, E. Lozano, F. Belmar, D. Alcaman, A. von Bohlen, C.A.B. Oliveira, A.L.M. Silva, J.F.C.A. Veloso, Characteristics of a robust and portable large area x-ray fluorescence imaging system. X-Ray Spectrom. 43(2), 126–130 (2014). https://doi.org/10.1002/xrs.2527

    Article  ADS  Google Scholar 

  4. M. Manso, S. Pessanha, M. Guerra, J.L. Figueirinhas, J.P. Santos, M.L. Carvalho, Unveiling the third secret of Fátima: \(\mu \)-XRF quantitative characterization and 2D elemental mapping. Spectrochim. Acta B 130, 35–38 (2017). https://doi.org/10.1016/j.sab.2017.02.006

    Article  ADS  Google Scholar 

  5. M. Alfeld, K. Janssens, J. Dik, W. de Nolf, G. van der Snickt, Optimization of mobile scanning Macro-XRF systems for the in situ investigation of historical paintings. J. Anal. At. Spectrom. 26, 899–909 (2011). https://doi.org/10.1039/C0JA00257G

    Article  Google Scholar 

  6. M. Alfeld, J.V. Pedroso, M. van Eikema Hommes, G. Van der Snickt, G. Tauber, J. Blaas, M. Haschke, K. Erler, J. Dik, K. Janssens, A mobile instrument for in situ scanning Macro-XRF investigation of historical paintings. J. Anal. At. Spectrom. 28, 760–767 (2013). https://doi.org/10.1039/C3JA30341A

    Article  Google Scholar 

  7. F.P. Romano, C. Caliri, P. Nicotra, S. Di Martino, L. Pappalardo, F. Rizzo, H.C. Santos, Real-time elemental imaging of large dimension paintings with a novel mobile macro x-ray fluorescence (MA-XRF) scanning technique. J. Anal. At. Spectrom. 32, 773–781 (2017). https://doi.org/10.1039/C6JA00439C

    Article  Google Scholar 

  8. B. De Samber, O. Scharf, G. Buzanich, J. Garrevoet, P. Tack, M. Radtke, H. Riesemeier, U. Reinholz, R. Evens, K. De Schamphelaere, G. Falkenberg, C. Janssen, L. Vincze, Three-dimensional x-ray fluorescence imaging modes for biological specimens using a full-field energy dispersive CCD camera. J. Anal. At. Spectrom. 34, 2083–2093 (2019). https://doi.org/10.1039/C9JA00198K

    Article  Google Scholar 

  9. J. Dudak, High-resolution x-ray imaging applications of hybrid-pixel photon counting detectors timepix. Radiat. Meas. 137, 106409 (2020). https://doi.org/10.1016/j.radmeas.2020.106409

    Article  Google Scholar 

  10. A. Bressan, R.R. De Oliveira, A. Gandi, J.-C. Labbé, L. Ropelewski, F. Sauli, D. Mörmann, T. Müller, H.J. Simonis, Two-dimensional readout of gem detectors. Nucl. Instrum. Methods Phys. Res. A 425(1), 254–261 (1999). https://doi.org/10.1016/S0168-9002(98)01405-3

    Article  ADS  Google Scholar 

  11. J.M. Maia, J.F.C.A. Veloso, J.M.F. dos Santos, A. Breskin, R. Chechik, D. Mörmann, Advances in the micro-hole & strip plate gaseous detector. Nucl. Instrum. Methods Phys. Res. B 504(1–3), 364–368 (2003). https://doi.org/10.1016/S0168-9002(03)00772-1. ISSN 01689002

    Article  Google Scholar 

  12. F.D. Amaro, C. Santos, J.F.C.A. Veloso, A. Breskin, R. Chechik, J.M.F. Dos Santos, The thick-COBRA: a new gaseous electron multiplier for radiation detectors. J. Instrum. (2010). https://doi.org/10.1088/1748-0221/5/10/P10002

    Article  Google Scholar 

  13. F. Sauli, Gaseous Radiation Detectors—Fundamentals and Applications (Cambridge University Press, Cambridge, 2014). ISBN 9781107043015

    Book  Google Scholar 

  14. J.F.C.A. Veloso, A.L.M. Silva, Gaseous detectors for energy dispersive x-ray fluorescence analysis. Nucl. Instrum. Methods Phys. Res. B 878, 24–39 (2018). https://doi.org/10.1016/j.nima.2017.09.011. ISSN 0168-9002

    Article  Google Scholar 

  15. A. Zielińska, W. Dąbrowski, T. Fiutowski, B. Mindur, P. Wiącek, P. Wróbel, X-ray fluorescence imaging system for fast mapping of pigment distributions in cultural heritage paintings. J. Instrum. (2013). https://doi.org/10.1088/1748-0221/8/10/P10011

    Article  Google Scholar 

  16. A.L.M. Silva, R. Figueroa, A. Jaramillo, M.L. Carvalho, J.F.C.A. Veloso, Performance of a gaseous detector based energy dispersive X-ray fluorescence imaging system: analysis of human teeth treated with dental amalgam. Spectrochim. Acta B 86, 115–122 (2013a). https://doi.org/10.1016/j.sab.2013.03.005

    Article  ADS  Google Scholar 

  17. A.L.M. Silva, M.L. Carvalho, K. Janssens, J.F.C.A. Veloso, A large area full-field EDXRF imaging system based on a THCOBRA gaseous detector. J. Anal. At. Spectrom. 30(2), 343–352 (2015). https://doi.org/10.1039/C4JA00301B

    Article  Google Scholar 

  18. A.L.M. Silva, S. Cirino, M.L. Carvalho, M. Manso, S. Pessanha, C.D.R. Azevedo, L.F.N.D. Carramate, J.P. Santos, M. Guerra, J.F.C.A. Veloso, Elemental mapping in a contemporary miniature by full-field X-ray fluorescence imaging with gaseous detector versus scanning X-ray fluorescence imaging with polycapillary optics. Spectrochim. Acta B 129, 1–7 (2017). https://doi.org/10.1016/j.sab.2016.12.006

    Article  ADS  Google Scholar 

  19. A. Guilherme, J. Coroado, J.M.F. dos Santos, L. Lühl, T. Wolff, B. Kanngießer, M.L. Carvalho, X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: advances in the knowledge of the manufacturing techniques. Spectrochim. Acta B 66(5), 297–307 (2011). https://doi.org/10.1016/j.sab.2011.02.007. Thematic Issue 11th Rio Symposium on Atomic Spectrometry

    Article  ADS  Google Scholar 

  20. R. Mitchell, Portuguese art: Portuguese Azulejos, in Fine Arts Eur. last 10 Centuries., ed. by E. Delle Donne. (Michelangelo Project/Pixel, 2017), pp. 341–360

  21. A. de Azeitão, a. https://www.azulejosdeazeitao.com/

  22. A. de Azeitão: Um símbolo da cultura portuguesa, b. https://www.aquelesqueviajam.com/azulejos-de-azeitao-um-simbolo-da-cultura-portuguesa/

  23. A. de Azeitão, c. https://www.allaboutportugal.pt/pt/setubal/saberes-e-sabores/azulejos-de-azeitao

  24. F. Antunes Formigo, Estudo decorativo, morfológico e tecnológico da faiança de Coimbra. Master dissertation, Instituto Politécnico de Tomar, (2015). https://comum.rcaap.pt/handle/10400.26/8280

  25. Peça do mês - janeiro (2014), a. https://blogs.ua.pt/galeria/?p=1318

  26. Louça Portuguesa - Faiança Ratinha, b. http://museuvirtual.activa-manteigas.com/index.php/places/colecao-privada/louca-portuguesa-faianca-ratinha/

  27. Os Ratinhos - fainç popular de Coimbra, c. http://azulporcelana.blogspot.com/2010/05/os-ratinhos-faianca-popular-de-coimbra.html

  28. A.L.M. Silva, C.D.R. Azevedo, L.F.N.D. Carramate, T. Lopes, I.F. Castro, R. De Oliveira, J.F.C.A. Veloso, X-ray imaging detector based on a position sensitive THCOBRA with resistive line. J. Instrum. (2013b). https://doi.org/10.1088/1748-0221/8/05/P05016

    Article  Google Scholar 

  29. L.F.N.D. Carramate, A.L.M. Silva, C.D.R. Azevedo, D.S. Covita, J.F.C.A. Veloso, THCOBRA X-ray imaging detector operating in Ne/CH4. J. Instrum. 10(1), 10–19 (2015). https://doi.org/10.1088/1748-0221/10/01/P01003

    Article  Google Scholar 

  30. H.N.H.N. Da Luz, C.A.B. Oliveira, C.D.R. Azevedo, J.A. Mir, R. De Oliveira, J.M.F. Dos Santos, J.F.C.A. Veloso, Single photon counting X-ray imaging system using a micro hole and strip plate. IEEE Trans. Nucl. Sci. 55(4), 2341–2345 (2008). https://doi.org/10.1109/TNS.2008.2001423

    Article  ADS  Google Scholar 

  31. J.F.C.A. Veloso, A.L.M. Silva, C.A.B. Oliveira, A.L. Gouvêa, C.D.R. Azevedo, L. Carramate, H. Natal da Luz, J.M.F. dos Santos, Energy resolved X-ray fluorescence imaging based on a micropattern gas detector. Spectrochim. Acta B 65(3), 241–247 (2010). https://doi.org/10.1016/j.sab.2010.03.006

    Article  ADS  Google Scholar 

  32. Jerrold T. Bushberg, J. Anthony Seibert, Edwin M. Leidholdt Jr., John M. Boone. The Essential Physics of Medical Imaging. Lippincott Williams & Wilkins, 3 edition (2002). ISBN 978-0-7817-8057-5

  33. R. Accorsi, Analytic determination of the resolution-equivalent effective diameter of a pinhole collimator. IEEE Trans Med Imaging 23(6), 750–763 (2004). https://doi.org/10.1109/TMI.2004.826951

    Article  Google Scholar 

  34. A.L.M. Silva, C.D.R. Azevedo, C.A.B. Oliveira, J.M.F. Dos Santos, M.L. Carvalho, J.F.C.A. Veloso, Characterization of an energy dispersive X-ray fluorescence imaging system based on a micropattern gaseous detector. Spectrochim. Acta B 66(5), 308–313 (2011). https://doi.org/10.1016/j.sab.2011.03.002

    Article  ADS  Google Scholar 

  35. A.L. Silva, MPGDs based radiation imaging devices and applications. Phd thesis, Universidade de Aveiro (2013)

Download references

Acknowledgements

This work was partially supported by project PTDC/FIS-AQM/32536/2017 through FEDER and FCT (Portugal) programs, by Projects UIDB/50025/2020 and UIDP/50025/2020 financed by national funds through the FCT/MEC, and by the research centre Grant UID/FIS/04559/2020 to LIBPhys-UNL from the FCT/MCTES/PIDDAC (Portugal). P. M. S. Carvalho acknowledges the support of FCT (Portugal) under Contract No. PD/BD/128324/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. S. Carvalho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, P.M.S., Leite, F., Silva, A.L.M. et al. Elemental mapping of Portuguese ceramic pieces with a full-field XRF scanner based on a 2D-THCOBRA detector. Eur. Phys. J. Plus 136, 423 (2021). https://doi.org/10.1140/epjp/s13360-021-01422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01422-y

Navigation