Skip to main content
Log in

Enthalpy, Gibbs free energy and specific heat in constant pressure for diatomic molecules using improved deformed exponential-type potential (IDEP)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we have studied such thermal function of diatomic molecules like hydrogen dimer, carbon monoxide, nitrogen dimer and lithium hydride using improved deformed exponential-type potential (IDEP). To this end, the energy spectra of the IDEP are obtained applying Greene-Aldrich approximation and appropriate coordinate transformation within the framework of non-relativistic quantum mechanics. With calculated energy eigenstates, we have deduced the partition function and such thermodynamic functions like specific heat in constant pressure, enthalpy and Gibbs free energy by employing the Poisson summation formula. We have compared our results with experimental data, and there is a good agreement between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. X.-L. Peng, R. Jiang, C.-S. Jia, L.-H. Zhang, Y.-L. Zhao, Gibbs free energy of gaseous phosphorus dimer. Chem. Eng. Sci. 190, 122–125 (2018)

    Article  Google Scholar 

  2. C.-S. Jia, Y.-F. Diao, X.-J. Liu, P.-Q. Wang, J.-Y. Liu, G.-D. Zhang, Equivalence of the Wei potential model and Tietz potential model for diatomic molecules. J. Chem. Phys. 137, 014101 (2012)

    Article  ADS  Google Scholar 

  3. R. Khordad, A. Ghanbari, Theoretical prediction of thermodynamic functions of TiC: Morse ring-shaped potential. J. Low Temp. Phys. 199, 1198–1210 (2020)

    Article  ADS  Google Scholar 

  4. A. Ghanbari, R. Khordad, Theoretical prediction of thermodynamic properties of N2 and CO using pseudo harmonic and Mie-type potentials. Chem. Phys. 534, 110732 (2020)

    Article  Google Scholar 

  5. R. Khordad, A. Avazpour, A. Ghanbari, Exact analytical calculations of thermodynamic functions of gaseous substances. Chem. Phys. 517, 30–35 (2019)

    Article  Google Scholar 

  6. C.-S. Jia, C.-W. Wang, L.-H. Zhang, X.-L. Peng, R. Zeng, X.-T. You, Partition function of improved Tietz oscillators. Chem. Phys. Lett. 676, 150–153 (2017)

    Article  ADS  Google Scholar 

  7. C.-S. Jia, C.-W. Wang, L.-H. Zhang, X.-L. Peng, H.-M. Tang, R. Zeng, Enthalpy of gaseous phosphorus dimer. Chem. Eng. Sci. 183, 26–29 (2018)

    Article  Google Scholar 

  8. C.-S. Jia, C.-W. Wang, L.-H. Zhang, X.-L. Peng, H.-M. Tang, J.-Y. Liu, Y. Xiong, R. Zeng, Predictions of entropy for diatomic molecules and gaseous substances. Chem. Phys. Lett. 692, 57–60 (2018)

    Article  ADS  Google Scholar 

  9. R. Khordad, A. Ghanbari, Analytical calculations of thermodynamic functions of lithium dimer using modified Tietz and Badawi-Bessis-Bessis potentials. Comput. Theor. Chem. 1155, 1–8 (2019)

    Article  Google Scholar 

  10. M. Kria, K. Feddi, N. Aghoutane, M. El-Yadri, L. Pérez, D. Laroze, F. Dujardin, E. Feddi, Thermodynamic properties of SnO2/GaAs core/sell nanofiber. Physica A 560, 125104 (2020)

    Article  Google Scholar 

  11. L. Guo, J. Du, Thermodynamic potentials and thermodynamic relations in nonextensive thermodynamics. Physica A 390, 183–188 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  12. P. Ammendola, F. Raganati, R. Chirone, CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed: thermodynamics and kinetics. Chem. Eng. J. 322, 302–313 (2017)

    Article  Google Scholar 

  13. J. Bedia, C. Belver, S. Ponce, J. Rodriguez, J. Rodriguez, Adsorption of antipyrine by activated carbons from FeCl3-activation of Tara gum. Chem. Eng. J. 333, 58–65 (2018)

    Article  Google Scholar 

  14. S. Dastidar, C.J. Hawley, A.D. Dillon, A.D. Gutierrez-Perez, J.E. Spanier, A.T. Fafarman, Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide. J. Phys. Chem. Lett. 8, 1278–1282 (2017)

    Article  Google Scholar 

  15. V.L. Zherebtsov, M.M. Peganova, Water solubility versus temperature in jet aviation fuel. Fuel 102, 831–834 (2012)

    Article  Google Scholar 

  16. Y.I. Prylutskyy, A. Shut, M. Miroshnychenko, A. Suprun, Thermodynamic and mechanical properties of skeletal muscle contraction. Int. J. Thermophys. 26, 827–835 (2005)

    Article  ADS  Google Scholar 

  17. N.P. Stadie, M. Murialdo, C.C. Ahn, B. Fultz, Anomalous isosteric enthalpy of adsorption of methane on zeolite-templated carbon. J. Am. Chem. Soc. 135, 990–993 (2013)

    Article  Google Scholar 

  18. S.A. Moses, J.P. Covey, M.T. Miecnikowski, B. Yan, B. Gadway, J. Ye, D.S. Jin, Creation of a low-entropy quantum gas of polar molecules in an optical lattice. Science 350, 659–662 (2015)

    Article  ADS  Google Scholar 

  19. R. Mebsout, S. Amari, S. Méçabih, B. Abbar, B. Bouhafs, Spin-polarized calculations of magnetic and thermodynamic properties of the full-heusler CO2 MnZ (Z= Al, Ga). Int. J. Thermophys. 34, 507–520 (2013)

    Article  ADS  Google Scholar 

  20. T. Ibrahim, K. Oyewumi, S. Wyngaardt, Analytical solution of N-dimensional Klein–Gordon and Dirac equations with Rosen–Morse potential. Eur. Phys. J. Plus 127, 100 (2012)

    Article  Google Scholar 

  21. X.-Y. Gu, S.-H. Dong, Energy spectrum of the Manning-Rosen potential including centrifugal term solved by exact and proper quantization rules. J. Math. Chem. 49, 2053 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Tietz, A new potential energy function for diatomic molecules. J. Phys. Soc. Jpn. 18, 1647–1649 (1963)

    Article  ADS  Google Scholar 

  23. Y.P. Varshni, Comparative study of potential energy functions for diatomic molecules. Rev. Mod. Phys. 29, 664 (1957)

    Article  ADS  Google Scholar 

  24. X.-J. Xie, C.-S. Jia, Solutions of the Klein-Gordon equation with the Morse potential energy model in higher spatial dimensions. Phys. Scr. 90, 035207 (2015)

    Article  ADS  Google Scholar 

  25. H. Baltache, R. Khenata, M. Sahnoun, M. Driz, B. Abbar, B. Bouhafs, Full potential calculation of structural, electronic and elastic properties of alkaline earth oxides MgO, CaO and SrO. Physica B 344, 334–342 (2004)

    Article  ADS  Google Scholar 

  26. M.M. Nieto, L. Simmons Jr., V.P. Gutschick, Coherent states for general potentials. VI. Conclusions about the classical motion and the WKB approximation. Phys. Rev. D 23, 927 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  27. H. Louis, B.I. Ita, N.I. Nzeata, Approximate solution of the Schrödinger equation with Manning–Rosen plus Hellmann potential and its thermodynamic properties using the proper quantization rule. Eur. Phys. J. Plus 134, 315 (2019)

    Article  Google Scholar 

  28. M. Oliveira, A.G. Schmidt, Exact solutions of Schrödinger and Pauli equations on a spherical surface and interacting with Pöschl–Teller double-ring-shaped potential. Physica E 120, 114029 (2020)

    Article  Google Scholar 

  29. M. Udoh, U. Okorie, M. Ngwueke, E. Ituen, A. Ikot, Rotation-vibrational energies for some diatomic molecules with improved Rosen–Morse potential in D-dimensions. J. Mol. Model. 25, 170 (2019)

    Article  Google Scholar 

  30. V. Badalov, B. Baris, K. Uzun, Bound states of the D-dimensional Schrödinger equation for the generalized Woods–Saxon potential. Mod. Phys. Lett. A 34, 1950107 (2019)

    Article  ADS  MATH  Google Scholar 

  31. C.-S. Jia, Y. Li, Y. Sun, J.-Y. Liu, L.-T. Sun, Bound states of the five-parameter exponential-type potential model. Phys. Lett. A 311, 115–125 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. H. Bakhti, A. Diaf, M. Hachama, Computing thermodynamic properties of the O2 and H2 molecules with multi-parameter exponential-type potential. Comput. Theor. Chem. 1185, 112879 (2020)

    Article  Google Scholar 

  33. E. Eyube, U. Wadata, S. Najoji, Energy eigenvalues and eigenfunctions of a diatomic molecule in quadratic exponential-type potential. Niger. Ann. Pure Appl. Sci. 3, 240–251 (2020)

    Article  Google Scholar 

  34. K.-X. Fu, M. Wang, C.-S. Jia, Improved five-parameter exponential-type potential energy model for diatomic molecules. Commun. Theor. Phys. 71, 103 (2019)

    Article  ADS  Google Scholar 

  35. B.J. Xie, C.S. Jia, Improved multiparameter exponential-type potential for diatomic molecules. Int. J. Quantum Chem. 120, e26058 (2020)

    Article  Google Scholar 

  36. P. Linstorm, Nist chemistry webbook, nist standard reference database number 69. J. Phys. Chem. Ref. Data Monograph 9, 1–1951 (1998)

    Google Scholar 

  37. C. Onate, M. Onyeaju, A. Ikot, O. Ebomwonyi, Eigen solutions and entropic system for Hellmann potential in the presence of the Schrödinger equation. Eur. Phys. J. Plus 132, 462 (2017)

    Article  Google Scholar 

  38. C.-S. Jia, T. Chen, L.-G. Cui, Approximate analytical solutions of the Dirac equation with the generalized Pöschl–Teller potential including the pseudo-centrifugal term. Phys. Lett. A 373, 1621–1626 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. J.A. Kunc, F.J. Gordillo-Vazquez, Rotational−vibrational levels of diatomic molecules represented by the Tietz−Hua rotating oscillator. J. Phys. Chem. A 101, 1595–1602 (1997)

    Article  Google Scholar 

  40. M. Rafi, R. Al-Tuwirqi, H. Farhan, I. Khan, A new four-parameter empirical potential energy function for diatomic molecules. Pramana 68, 959–965 (2007)

    Article  ADS  Google Scholar 

  41. C.-S. Jia, L.-H. Zhang, C.-W. Wang, Thermodynamic properties for the lithium dimer. Chem. Phys. Lett. 667, 211–215 (2017)

    Article  ADS  Google Scholar 

  42. M. Deng, C.-S. Jia, Prediction of enthalpy for nitrogen gas. Eur. Phys. J. Plus 133, 258 (2018)

    Article  Google Scholar 

  43. C.-S. Jia, R. Zeng, X.-L. Peng, L.-H. Zhang, Y.-L. Zhao, Entropy of gaseous phosphorus dimer. Chem. Eng. Sci. 190, 1–4 (2018)

    Article  Google Scholar 

  44. C.-S. Jia, L.-H. Zhang, X.-L. Peng, J.-X. Luo, Y.-L. Zhao, J.-Y. Liu, J.-J. Guo, L.-D. Tang, Prediction of entropy and Gibbs free energy for nitrogen. Chem. Eng. Sci. 202, 70–74 (2019)

    Article  Google Scholar 

  45. M. Farout, A. Bassalat, S.M. Ikhdair, Feinberg–Horodocki exact momentum states of improved deformed exponential-type potential. arXiv: 2007.14789 (2020)

  46. U.S. Okorie, A.N. Ikot, E.O. Chukwuocha, The improved deformed exponential-type potential energy model for N2, NI, ScI, and RbH diatomic molecules. Bull. Korean Chem. Soc. 41, 609–614 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Ghanbari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibinejad, M., Ghanbari, A. Enthalpy, Gibbs free energy and specific heat in constant pressure for diatomic molecules using improved deformed exponential-type potential (IDEP). Eur. Phys. J. Plus 136, 400 (2021). https://doi.org/10.1140/epjp/s13360-021-01338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01338-7

Navigation