Skip to main content
Log in

Coherence dynamics induced by attenuation and amplification Gaussian channels

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Quantum Gaussian channels play a key role in quantum information theory. In particular, the attenuation and amplification channels are useful to describe noise and decoherence effects on continuous variables systems. They are directly associated with the beam splitter and two-mode squeezing operations, which have operational relevance in quantum protocols with bosonic models. An important property of these channels is that they are Gaussian completely positive maps, and the action on a general input state depends on the parameters characterizing the channels. In this work, we study the coherence dynamics introduced by these channels on input Gaussian states. We derive explicit expressions for the coherence depending on the parameters describing the channels. By assuming a displaced thermal state with initial coherence as input state, for the attenuation case it is observed a revival of the coherence as a function of the transmissivity coefficient, whereas for the amplification channel the coherence reaches asymptotic values depending on the gain coefficient. Further, we obtain the entropy production for these classes of operations, showing that it can be reduced by controlling the parameters involved. We write a simple expression for computing the entropy production due to the coherence for both channels. This can be useful to simulate many processes in quantum thermodynamics, as finite-time driving on bosonic modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All the data generated during this study are contained in this article.]

References

  1. X.-B. Wang, T. Hiroshima, A. Tomita, M. Hayashi, Quantum information with Gaussian states. Phys. Rep. 448, 1 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  2. C. Weedbrook, S. Pirandola, R. García-Patrón, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  3. G. Adesso, S. Ragy, A.R. Lee, Continuous variable quantum information: Gaussian states and beyond. Open Syst. Inf. Dyn. 21, 1440001 (2014)

    Article  MathSciNet  Google Scholar 

  4. K. Marshall, D.F.V. James, A. Paler, H.-K. Lau, Universal quantum computing with thermal state bosonic systems. Phys. Rev. A 99, 032345 (2019)

    Article  ADS  Google Scholar 

  5. C. Macchiavello, A. Riccardi, M.F. Sacchi, Quantum thermodynamics of two bosonic systems. Phys. Rev. A 101, 062326 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Kosloff, Y. Rezek, The Quantum Harmonic Otto Cycle. Entropy 19, 4 (2017)

    Article  Google Scholar 

  7. G. De Chiara et al., Reconciliation of quantum local master equations with thermodynamics. New J. Phys. 20, 113024 (2018)

    Article  Google Scholar 

  8. A. Serafini, Quantum Continuous Variables. A Primer of Theoretical Methods (CRC Press, Boca Raton, 2017)

    Book  Google Scholar 

  9. M. Jarzyna, Classical capacity per unit cost for quantum channels. Phys. Rev. A 96, 032340 (2017)

    Article  ADS  Google Scholar 

  10. H. Qi, M.M. Wilde, Capacities of quantum amplifier channels. Phys. Rev. A 95, 012339 (2017)

    Article  ADS  Google Scholar 

  11. S.N. Filippov, M. Ziman, Entanglement sensitivity to signal attenuation and amplification. Phys. Rev. A 90, 010301(R) (2014)

    Article  ADS  Google Scholar 

  12. L. Ruppert, C. Peuntinger, B. Heim, K. Günthner, V.C. Usenko, D. Elser, G. Leuchs, R. Filip, C. Marquardt, Fading channel estimation for free-space continuous-variable secure quantum communication. New J. Phys. 21, 123036 (2019)

    Article  Google Scholar 

  13. R. Blandino, A. Leverrier, M. Barbieri, J. Etesse, P. Grangier, R. Tualle-Brouri, Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier. Phys. Rev. A 86, 012327 (2012)

    Article  ADS  Google Scholar 

  14. S.L. Braunstein, N.J. Cerf, S. Iblisdir, P. van Loock, S. Massar, Optimal Cloning of Coherent States with a Linear Amplifier and Beam Splitters. Phys. Rev. Lett. 86, 4938 (2001)

    Article  ADS  Google Scholar 

  15. P. Liuzzo-Scorpo, W. Roga, L.A.M. Souza, N.K. Bernardes, G. Adesso, Non-Markovianity Hierarchy of Gaussian Processes and Quantum Amplification. Phys. Rev. Lett. 118, 050401 (2017)

    Article  ADS  Google Scholar 

  16. S. Kallush, A. Aroch, R. Kosloff, Quantifying the unitary generation of coherence from thermal quantum systems. Entropy 21, 8 (2019)

    Article  MathSciNet  Google Scholar 

  17. P.A. Camati, J.F.G. Santos, R.M. Serra, Coherence effects in the performance of the quantum Otto heat engine. Phys. Rev. A 99, 062103 (2019)

    Article  ADS  Google Scholar 

  18. L.P. García-Pintos, A. Hamma, A. del Campo, Fluctuations in Extractable Work Bound the Charging Power of Quantum Batteries. Phys. Rev. A 125, 040601 (2020)

    MathSciNet  Google Scholar 

  19. Y. Rezek, Reflections on Friction in quantum mechanics. Entropy 12, 1885 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  20. F. Plastina, A. Alecce, T.J.G. Apollaro, G. Falcone, G. Francica, F. Galve, N. Lo Gullo, R. Zambrini, Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 113, 260601 (2014)

    Article  ADS  Google Scholar 

  21. J.P. Santos, L.C. Céleri, G.T. Landi, M. Paternostro, The role of quantum coherence in non-equilibrium entropy production. npj Quantum Inf. 5, 23 (2019)

    Article  ADS  Google Scholar 

  22. G. Francica, J. Goold, F. Plastina, The role of coherence in the non-equilibrium thermodynamics of quantum systems. Phys. Rev. E 99, 042105 (2019)

    Article  ADS  Google Scholar 

  23. C. Datta, S. Sazim, A.K. Pati, P. Agrawal, Coherence of quantum channels. Annals Phys. 397, 243 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Xu, Coherence of quantum channels. Phys. Rev. A 100, 052311 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  25. D.F. Walls, G.J. Milburn, Quantum Optics (Springer, Berlin, 2008)

    Book  Google Scholar 

  26. L. Ortiz-Gutiérrez, B. Gabrielly, L.F. Muñoz, K.T. Pereira, J.G. Filgueiras, A.S. Villar, Continuous variables quantum computation over the vibrational modes of a single trapped ion. Opt. Commun. 397, 166 (2017)

    Article  ADS  Google Scholar 

  27. T. Baumgratz, M. Cramer, M.B. Plenio, Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  28. A. Winter, D. Yang, Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  29. K.B. Dana, M.G. Díaz, M. Mejatty, A. Winter, Resource theory of coherence: beyond states. Phys. Rev. A 95, 062327 (2017)

    Article  ADS  Google Scholar 

  30. T.C. Ralph, A. Gilchrist, G.J. Milburn, W.J. Munro, S. Glancy, Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003)

    Article  ADS  Google Scholar 

  31. J. Joo, W.J. Munro, T.P. Spiller, Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)

    Article  ADS  Google Scholar 

  32. J. Xu, Quantifying coherence of Gaussian states. Phys. Rev. A 93, 032111 (2016)

    Article  ADS  Google Scholar 

  33. A.M. Zagoskin, S. Savelév, Franco Nori, F.V. Kusmartsev, Squeezing as the source of inefficiency in the quantum Otto cycle. Phys. Rev. A 86, 014501 (2012)

    Article  ADS  Google Scholar 

  34. F. Chen, Yi. Gao, M. Galperin, Molecular heat engines: quantum coherence effects. Entropy 19, 472 (2017)

    Article  ADS  Google Scholar 

  35. F.H. Kamin, F.T. Tabesh, S. Salimi, F. Kheirandish, The resource theory of coherence for quantum channels. Quantum Inf. Process. 19, 210 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Gherardini, M.M. Müller, A. Trombettoni, S. Ruffo, F. Caruso, Reconstructing quantum entropy production to probe irreversibility and correlations. Quantum Sci. Tech. 3, 3 (2018)

    Article  Google Scholar 

  37. S. Deffner, E. Lutz, Nonequilibrium entropy production for open quantum systems. Phys. Rev. Lett. 107, 140404 (2011)

    Article  ADS  Google Scholar 

  38. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press Inc, New York, 2003)

    MATH  Google Scholar 

Download references

Acknowledgements

Jonas F. G. Santos acknowledges São Paulo Research Grant No. 2019/04184-5, for support. Carlos H. S. Vieira acknowledges CAPES (Brazil) for support. The authors acknowledge Federal University of ABC for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas F. G. Santos.

Appendix: Entropy production

Appendix: Entropy production

Although simple, here we derive the expression in Eq. (36). As mentioned in main text, the protocol is composed of two parts. The Gaussian input state passes through an attenuation (amplification) channel and then thermalizes with a Markovian thermal reservoir with inverse temperature \(\beta \) and average number of photons \(\bar{N}\). The entropy production of a unitary process followed by a thermalization can be written as [17]

$$\begin{aligned} \langle \Sigma \rangle =S(\rho _{\tau _{1}}||\rho _{\tau _{1}}^{\mathrm{eq,h}}) -S(\rho _{\tau _{2}}||\rho _{\tau _{2}}^{\mathrm{eq,h}}), \end{aligned}$$
(39)

where \(\rho _{\tau _{1}}\)is the state after the unitary transformation, \(\rho _{\tau _{2}}\) is the state during the thermalization process, and \(\rho _{\tau _{1}}^{\mathrm{eq,h}}\) is the reference thermal state associated with the thermal reservoir. As the reference state is thermal the relative entropy can be rewritten as \(S(\rho _{t}||\rho _{t}^{\mathrm{eq,h}})=\beta \left[ {\mathcal {U}}(\rho _{t})-F_{t}^{\mathrm{eq}}\right] -S(\rho _{t})\), with \({\mathcal {U}}(\rho _{t})\) and \(F_{t}^{\mathrm{eq}}\) the internal energy of the system and the free energy, respectively. By manipulating, we obtain

$$\begin{aligned} \langle \Sigma \rangle&=\beta \left[ {\mathcal {U}}(\rho _{\tau _{1}})-F_{\tau _{1}}^{\mathrm{eq}}\right] -S(\rho _{\tau _{1}})\\&\quad -\left\{ \beta \left[ {\mathcal {U}}(\rho _{\tau _{2}})-F_{\tau _{2}}^{\mathrm{eq}}\right] -S(\rho _{\tau _{2}})\right\} \\&=\beta \left[ {\mathcal {U}}(\rho _{\tau _{1}})-{\mathcal {U}}(\rho _{\tau _{2}})\right] -S(\rho _{\tau _{1}})+S(\rho _{\tau _{2}})\\&=-\beta \Delta {\mathcal {U}}_{\tau _{2},\tau _{1}}+\Delta S_{\tau _{2},\tau _{1}}. \end{aligned}$$

To complete, for Gaussian states the internal energy can be written in terms of the covariance matrix, i.e.,

$$\begin{aligned} {\mathcal {U}}(\rho _{t})=\frac{\hbar \omega }{4}\text {Tr}\left[ \sigma _{t}\right] . \end{aligned}$$
(40)

With this, for Gaussian states the entropy production can be completely characterized by the covariance matrix of the state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, J.F.G., Vieira, C.H.S. Coherence dynamics induced by attenuation and amplification Gaussian channels. Eur. Phys. J. Plus 136, 323 (2021). https://doi.org/10.1140/epjp/s13360-021-01305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01305-2

Navigation