Skip to main content
Log in

Wigner functions in quantum mechanics with a minimum length scale arising from generalized uncertainty principle

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we generalize the concept of Wigner function in the case of quantum mechanics with a minimum length scale arising due to the application of a generalized uncertainty principle. We present the phase space formulation of such theories following GUP and show that the Weyl transform and the Wigner function satisfy most of their known properties in standard quantum mechanics. We utilize the generalized Wigner function to calculate the phase space average of the Hamiltonian of a quantum harmonic oscillator satisfying deformed Heisenberg algebra. It is also shown that averages of certain quantum mechanical operators in such theories may restrict the value of the deformation parameter specifying the degree of deformation of Heisenberg algebra. All the results presented are for pure states. The results can be generalized for mixed states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. W.B. Case, Wigner functions and Weyl transforms for pedestrians. Am. J. Phys. 76(10)(2008)

  2. A. Kempf, G. Mangano, R.B. Mann, Hilbert Space Representation of the Minimal Length Uncertainty Relation. Phys. Rev. D 52, 1108 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Maggiore, Quantum groups, gravity, and the generalized uncertainty principle. Phys. Rev. D 49, 5182 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Kempf, Uncertainty relation in quantum mechanics with quantum group symmetry. J. Math. Phys. 35, 4483 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Kempf, Quantum group-symmetric Fock spaces with Bargmann–Fock representation. Lett. Math. Phys. 26, 1 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Kempf, Quantum group symmetric Bargmann–Fock space: Integral kernels, Green functions, driving forces. J. Math. Phys. 34, 969 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Kempf, Quantum Field Theory with Nonzero Minimal Uncertainties in Positions and Momenta. Preprint DAMTP/94-33, arXiv:hep-th/9405067 (1994)

  8. F. Brau, F. Buisseret, Minimal length uncertainty relation and gravity quantum well. Phys. Rev. D 52, 1108 (2006)

    Google Scholar 

  9. M.-T. Jaeckel, S. Reynaud, Gravitational quantum limit for length measurements. Phys. Lett. A 185, 143 (1994)

    Article  ADS  Google Scholar 

  10. A.P. Balachandran, G. Bimonte, E. Ercolessi, G. Landi, F. Lizzi, G. Sparano, P. Teotonio-Sobrinho, Finite quantum physics and non commutative geometry. Preprint ICTP: IC/94/38, DSF-T-2/94, SU-4240-567 (1994)

  11. M. Maggiore, The algebraic structure of the generalized uncertainty principle. Phys. Lett. B 319, 83 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  12. K. Konishi, G. Paffuti, P. Provero, Minimum physical length and the generalized uncertainty principle in string theory. Phys. Lett. B 234, 276 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Amati, M. Cialfaloni, G. Veneziano, Can space time be probed below the string size. Phys. Lett. B 216, 41 (1989)

    Article  ADS  Google Scholar 

  14. E. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  ADS  Google Scholar 

  15. M. Hillery, R.F. O’Connell, M.O. Scully, E.P. Wigner, Distribution functions in physics: Fundamentals. Phys. Rep. 106, 121–167 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  16. H. Lee, Theory and application of the quantum phase-space distribution functions. Phys. Rep. 259, 150–211 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  17. H. Weyl, The Theory of Groups and Quantum Mechanics (Dover, New York, 1931)

    MATH  Google Scholar 

  18. P. Bosso, Phys. Rev. D 97(12), 126010 (2018). https://doi.org/10.1103/PhysRevD.97.126010. [arXiv:1804.08202 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  19. P. Bosso, [arXiv:2005.12258 [gr-qc]]

  20. S. Das, M.P.G. Robbins, M.A. Walton, Can. J. Phys. 94(1), 139–146 (2016). https://doi.org/10.1139/cjp-2015-0456. [arXiv:1412.6467 [gr-qc]]

    Article  ADS  Google Scholar 

  21. P. Bosso, S. Das, R.B. Mann, Phys. Rev. D 96(6), 066008 (2017). https://doi.org/10.1103/PhysRevD.96.066008

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Bosso, S. Das, Ann. Phys. 396, 254–265 (2018). https://doi.org/10.1016/j.aop.2018.07.022

    Article  ADS  Google Scholar 

  23. M. Bawaj, C. Biancofiore, M. Bonaldi, F. Bonfigli, A. Borrielli, G. Di Giuseppe, L. Marconi, F. Marino, R. Natali, A. Pontin et al., Nature Commun. 6, 7503 (2015). https://doi.org/10.1038/ncomms8503. [arXiv:1411.6410 [gr-qc]]

    Article  ADS  Google Scholar 

  24. P.A. Bushev, J. Bourhill, M. Goryachev, N. Kukharchyk, E. Ivanov, S. Galliou, M.E. Tobar, S. Danilishin, Phys. Rev. D 100(6), 066020 (2019). https://doi.org/10.1103/PhysRevD.100.066020. [arXiv:1903.03346 [quant-ph]]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Bhattacharya.

Appendices

Appendix

A Uniqueness of Weyl transform and Wigner function

Our proof of the uniqueness of the definition of Weyl transform in QM following GUP is based on the assumption that the Weyl transform of the identity operator is unity. Keeping this in mind, we now introduce a general function \(f(x,p,u,\beta )\) and define the Weyl transform in deformed Heisenberg Algebra as :

$$\begin{aligned} \tilde{A}(x,p) = \int du e^{\frac{ixu}{\hbar }}f(x,p,u,\beta ) \langle p+u/2|\mathbf{A}|p-u/2\rangle \,. \end{aligned}$$
(76)

Our assumption \(\tilde{I} = 1\) demands

$$\begin{aligned} \tilde{I} = \int du e^{\frac{ixu}{\hbar }}f(x,p,u,\beta )\langle p+u/2|\mathbf{I}|p-u/2\rangle = 1\,. \end{aligned}$$
(77)

The above integration can easily be done showing that

$$\begin{aligned} f(p,u=0,\beta ) = \frac{1}{(1+\beta p^2)}\,. \end{aligned}$$
(78)

The above form of f does not depend upon x. Henceforth, we assume that in general f only depends on p and u. Now, we want our Weyl transform to satisfy the property

$$\begin{aligned} \frac{1}{h}\int \int \tilde{A}\tilde{B}dxdp= \mathrm{Tr}[\mathbf{A} \mathbf{B}]\,. \end{aligned}$$
(79)

This is very important for our analysis based on the momentum states as it is the key equation to calculate the averages of observable. The left hand side of the above equation can be written as:

$$\begin{aligned} \frac{1}{h}\int \int \tilde{A}\tilde{B}dxdp= & {} \frac{1}{h}\int \int \int \int e^{i\frac{(u_1 + u_2)x}{\hbar }}\langle p+ u_1/{2|\mathbf{A}|p- u_1/2\rangle \langle p+ u_2/2|\mathbf{B}|p- u_2/2\rangle }\\&\times f(\beta , p, u_1)f(\beta , p, u_2)\, du_1 \,du_2 \,dx \,dp\,. \end{aligned}$$

Integrating with respect to x we get a delta function

$$\begin{aligned} \delta (u_1 + u_2) = \frac{1}{2\pi \hbar }\int e^{\frac{i(u_1 + u_2)x}{\hbar }} dx, \end{aligned}$$
(80)

using which we can now write,

$$\begin{aligned} \frac{1}{h}\int \int \tilde{A}\tilde{B}dxdp= & {} \int \int \int \delta (u_1+u_2)\langle p+ u_1/2|\mathbf{A}|p- u_1/2\rangle \langle p+ u_2/2|\mathbf{B}|p- u_2/2\rangle \\&\times f(\beta , p, u_1)f(\beta , p, u_2) \,dp \,du_1\,du_2\\= & {} \int \int \langle p+ u_1/2|\mathbf{A}|p- u_1/2\rangle \langle p- u_1/2 |\mathbf{B}|p\\&+ u_1/2 \rangle f(\beta , p, u_1)f(\beta , p, -u_1) du_1 dp\,. \end{aligned}$$

Defining new variables as \(p + \frac{u_{1}}{2} = v \) and \(p - \frac{u_{1}}{2} = y\) such that \(dp du_1 = dvdy\) the above expression transforms to

$$\begin{aligned} \frac{1}{h}\int \int \tilde{A}\tilde{B}dxdp= \int \int \langle v|\mathbf{A}|y\rangle \langle y|\mathbf{B}|v\rangle f(\beta , p, 2(v-y))f(\beta , p, -2(v-y)) dy\,dv\,.\nonumber \\ \end{aligned}$$
(81)

Now, the right hand side of Eq. (79) is

$$\begin{aligned} \mathrm{Tr}[\mathbf{A \mathbf{B}}] \equiv \int \frac{\langle v|\mathbf{A \mathbf{B}}|v \rangle }{1+\beta v^2} dv=\int \frac{\langle v|\mathbf{A}|y\rangle \langle y|\mathbf{B}|v\rangle }{(1+\beta v^2)(1+\beta y^2)}\,dv\,dy\,. \end{aligned}$$
(82)

We know that if Eq. (81) is equal to the right hand side of Eq. (79), then from the last equation above we must have

$$\begin{aligned} f(\beta , p, 2(v-y))f(\beta , p, -2(v-y))=\frac{1}{(1+\beta v^2)(1+\beta y^2)}\,. \end{aligned}$$
(83)

The above equation yields

$$\begin{aligned} f(\beta ,p,u_1)f(\beta ,p,-u_1) = \frac{1}{\left[ 1+\beta (p+u_1/2)^2\right] \left[ 1+\beta (p-u_1/2)^2\right] }\,. \end{aligned}$$
(84)

This equation provides three different possible forms of the function \(f(\beta ,p,u)\) as:

$$\begin{aligned} f(p,u,\beta ) = \frac{1}{\left[ 1+\beta (p+u/2)^2\right] }, \end{aligned}$$
(85)

or

$$\begin{aligned} f(p,u,\beta ) = \frac{1}{\left[ 1+\beta (p-u/2)^2\right] }, \end{aligned}$$
(86)

or

$$\begin{aligned} f(p,u,\beta ) = \frac{1}{\left[ 1+\beta (p+u/2)^2\right] ^{\frac{1}{2}}\left[ 1+\beta (p-u/2)^2\right] ^{\frac{1}{2}}}. \end{aligned}$$
(87)

The Weyl transform of x (\(\tilde{x}\)) using the above forms of \(f(p,u,\beta )\) are given respectively by:

$$\begin{aligned} \tilde{x}= & {} x(1+\beta p^2) - i\hbar \beta p, \end{aligned}$$
(88)
$$\begin{aligned} \tilde{x}= & {} x(1+\beta p^2) + i\hbar \beta p, \end{aligned}$$
(89)

and

$$\begin{aligned} \tilde{x} = x(1+\beta p^2)\,. \end{aligned}$$
(90)

But, Weyl transform of observable (Hermitian operators) is purely real, so we can disregard the form of \(f(p,u,\beta )\) which produces complex Weyl transforms. Thus we get the unique form of the Weyl transform to be:

$$\begin{aligned} \tilde{A}(x,p) = \int du e^{\frac{ixu}{\hbar }}\frac{\langle p+u/2|\mathbf{A}|p-u/2\rangle }{\left[ 1+\beta (p+u/2)^2\right] ^{\frac{1}{2}} \left[ 1+\beta (p-u/2)^2\right] ^{\frac{1}{2}}}\,. \end{aligned}$$
(91)

This is exactly the Weyl transform we have used in the paper.

B High momentum behavior of the Wigner function

Wigner function is given by :

$$\begin{aligned} W(x,p) = \frac{1}{h}\int e^{\frac{ix u}{\hbar }} \frac{\phi (p+ u/2)\phi ^*(p- u/2)}{\left[ 1+\beta (p-\frac{u}{2})^{2}\right] ^{\frac{1}{2}}\left[ 1+\beta (p+\frac{u}{2})^{2}\right] ^{\frac{1}{2}}}du. \end{aligned}$$
(92)

Let power of p in the wave function \(\phi \) be m. Thus for large p, the Wigner function W(xp) will go as \(p^{2m-2}\). Now, for harmonic oscillator, \(\phi \) takes the form :

$$\begin{aligned} \phi _{n}(p) \propto \frac{1}{(1+\beta p^{2})^{\sqrt{q+r_{n}}}}\,F\left( a_{n},-n,c_{n};\frac{1+i\sqrt{\beta }p}{2}\right) , \end{aligned}$$
(93)

where \(F\left( a_{n},-n,c_{n};\frac{1+i\sqrt{\beta }p}{2}\right) \) is the Hypergeometric polynomial function or order n. From these facts we can write \(m = n-2\sqrt{q+r_n} = n-2j\) where \(j \equiv \sqrt{q+r_{n}}=\frac{1}{2}\left( n+\frac{1}{2}\right) +\frac{1}{4}\sqrt{1+16r}\). Therefore \(W(x,p) \propto p^{2(n-2j)-2}\) in the high momentum limit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeole, P., Kumar, V. & Bhattacharya, K. Wigner functions in quantum mechanics with a minimum length scale arising from generalized uncertainty principle. Eur. Phys. J. Plus 136, 174 (2021). https://doi.org/10.1140/epjp/s13360-021-01166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01166-9

Navigation