Skip to main content
Log in

Radiative melting heat transfer through a micropolar nanoliquid by using Koo and Kleinstreuer model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this research paper, we examined a two-dimensional micropolar nanofluid flow in the light of a melting surface with warm nonlinear radiation and slip condition. Comparability transformations are utilized to deal with the problem equations for non-dimensionality. RKF 45-method is applied for the simulation of the demonstrated equations, and the biothermal framework is investigated for all the implanted parameters whose impacts are appeared through various graphs. Thus, fascinating outcomes exist in this paper because of the impacts of various constraints on various profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A.C. Eringen, Simple microfluids. Int. J..Eng. Sci. 2, 205–217 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  2. A.C. Eringen, Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  3. M. Turkyilmazoglu, Mixed convection flow of magnetohydrodynamic micropolar fluid due to a porous heated/cooled deformable plate: exact solutions. Int. J. Heat Mass Transf. 106, 127–134 (2017)

    Article  Google Scholar 

  4. F. Mabood, M.K. Nayak, A.J. Chamkha, Heat transfer on the cross flow of micropolar fluids over a thin needle moving in a parallel stream influenced by binary chemical reaction and Arrhenius activation energy. Eur. Phys. J. Plus 134(9), 427 (2019)

    Article  ADS  Google Scholar 

  5. L.A Lund, Z. Omar, I. Khan, J. Raza, M. El-Sayed, A.H. Seikh, Magnetohydrodynamic (MHD) flow of micropolar fluid with effects of viscous dissipation and Joule heating over an exponential shrinking sheet: triple solutions and stability analysis. Symmetry 12(1), 142 (2020)

  6. M.G. Reddy, P. Vijayakumari, L. Krishna, K.G. Kumar, B.C. Prasannakumara, Convective heat transport in a heat generating MHD vertical layer saturated by a non-Newtonian nanofluid: a bidirectional study. Multidiscip. Model. Mater. Struct. 2020). https://doi.org/10.1108/MMMS-01-2020-0002

    Article  Google Scholar 

  7. M. Turkyilmazoglu, Magnetohydrodynamic two-phase dusty fluid flow and heat model over deforming isothermal surfaces. Phys. Fluids 29(1), 013302 (2017)

    Article  ADS  Google Scholar 

  8. K.G. Kumar, M. Archana, B.J. Gireesha, M.R. Krishnamurthy, N.G. Rudraswamy, Cross diffusion effect on MHD mixed convection flow of nonlinear radiative heat and mass transfer of Casson fluid over a vertical plate. Results Phys. 8, 694–701 (2018)

    Article  ADS  Google Scholar 

  9. A.J. Chamkha, F. Selimefendigil, MHD mixed convection of nanofluid due to an inner rotating cylinder in a 3D enclosure with a phase change material. Int. J. Numer. Meth. Heat Fluid Flow 29(10), 559–3583 (2019)

    Google Scholar 

  10. A. Mishra, M. Kumar, Velocity and thermal slip effects on MHD nanofluid flow past a stretching cylinder with viscous dissipation and Joule heating. SN Appl. Sci. 2(8), 1350 (2020)

    Article  Google Scholar 

  11. B.J. Gireesha, B.M. Shankaralingappa, B.C. Prasannakumar, B. Nagaraja, ‘MHD flow and melting heat transfer of dusty Casson fluid over a stretching sheet with Cattaneo–Christov heat flux model’. Int. J. Ambient Energy (2020), 1–9. https://doi.org/10.1080/01430750.2020.1785938

  12. M.M. Rashidi N.V. Ganesh, A.K. A. Hakeem, B. Ganga, Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J Mol. Liq. 198, 234–238 (2014)

  13. K.G. Kumar, A.J. Chamkha, Darcy-Forchheimer flow and heat transfer of water-based Cu nanoparticles in convergent/divergent channel subjected to particle shape effect. Eur. Phys. J. Plus 134(3), 614–622 (2019)

    Google Scholar 

  14. M. Ijaz, M. Ayub, Nonlinear convective stratified flow of Maxwell nanofluid with activation energy. Heliyon 5, e01121 (2019)

  15. K.G. Kumar, M.G. Reddy, S.A. Shehzad, F.M. Abbasi, A least square study on flow and radiative heat transfer of a hybrid nanofluid in a moving frame by considering a spherically-shaped particle. Rev. Mex. Fis. 66(2), 162–170 (2020)

    MathSciNet  Google Scholar 

  16. K.G. Kumar, E.H.B. Hani, M.E.H. Assad, M.R. Gorji, S. Nadeem, A novel approach for investigation of heat transfer enhancement with ferromagnetic hybrid nanofluid by considering solar radiation. Microsyst. Technol. (2020). https://doi.org/10.1007/s00542-020-04920-8

    Article  Google Scholar 

  17. A. Roja, B.J. Gireesha, B.C. Prasannakumara, MHD micropolar nanofluid flow through an inclined channel with entropy generation subjected to radiative heat flux, viscous dissipation and multiple slip effects. Multidiscip. Model. Mater. Struct. 16(6), 1475–1496 (2020). https://doi.org/10.1108/MMMS-12-2019-0235

    Article  Google Scholar 

  18. L. Robert, On the melting of a semi-infinite body of ice placed in a hot stream of air. J. Fluid Mech. 4, 505–528 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A. Bejan, The fundamentals of sliding contact melting and friction. J. Heat Transf. 111, 13–20 (1989)

    Article  Google Scholar 

  20. M. Sheikholeslami, M.M. Rashidi, D.D. Ganji, Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model. J. Mol. Liq. 212, 117–126 (2015)

    Article  Google Scholar 

  21. K.G. Kumar, M.R. Krishnamurthy, N.G. Rudraswamy, Boundary layer flow and melting heat transfer of Prandtl fluid over a stretching surface by considering Joule heating effect. Multidiscip. Model. Mater. Struct. 15(2), 337–352 (2019)

    Article  Google Scholar 

  22. A.J. Chamkha, A.M. Rashad, E. Al-Meshaiei, Melting effect on unsteady hydromagnetic flow of a nanofluid past a stretching sheet. Int. J. Chem. Reactor Eng. 9(1), 1–23 (2011)

    Article  Google Scholar 

  23. M.G. Reddy, M. Sudharani, K.G. Kumar, A.J. Chamkha, G. Lorenzini, Physical aspects of Darcy-Forchheimer flow and dissipative heat transfer of Reiner-Philippoff fluid. J. Therm. Anal. Calorim. 141(2), 829–838 (2020)

    Article  Google Scholar 

  24. M. Radhika, R. J. P. Gowda, R. Naveenkumar, Siddabasappa, B.C. Prasannakumara, Heat transfer in dusty fluid with suspended hybrid nanoparticles over a melting surface. Heat Transf. (2020). https://doi.org/10.1002/htj.21972

  25. B.C. Prasannakumara, B.J. Gireesha, M.R. Krishnamurthy, R.S.R. Gorla, Slip flow and nonlinear radiative heat transfer of suspended nanoparticles due to a rotating disk in the presence of convective boundary condition. Int. J. Nanoparticles 9(3), 180–200 (2017)

    Article  Google Scholar 

  26. M.I. Khan, T. Hayat, M.I. Khan, A. Alsaedi, Activation energy impact in nonlinear radiative stagnation point flow of Cross nanofluid. Int. Commun. Heat Mass Transf. 91, 216–224 (2018)

    Article  Google Scholar 

  27. M. Bilal, M. Ramzan, Hall current effect on unsteady rotational flow of carbon nanotubes with dust particles and nonlinear thermal radiation in Darcy-Forchheimer porous media. J. Therm. Anal. Calorim. 138, 3127–3137 (2019)

    Article  Google Scholar 

  28. A. Kumar, R. Tripathi, R. Singh, V.K. Chaurasiya, Simultaneous effects of nonlinear thermal radiation and Joule heating on the flow of Williamson nanofluid with entropy generation. Phys. A 551, 123972 (2020)

    Article  MathSciNet  Google Scholar 

  29. S. Shaw, A.S. Dogonchi, M.K. Nayak, O.D. Makinde, Impact of entropy generation and nonlinear thermal radiation on Darcy–Forchheimer flow of MnFe2O4-Casson/Water nanofluid due to a rotating disk: application to brain dynamics. Arab. J. Sci. Eng. 04453 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basma Souayeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souayeh, B., Alfannakh, H. Radiative melting heat transfer through a micropolar nanoliquid by using Koo and Kleinstreuer model. Eur. Phys. J. Plus 136, 75 (2021). https://doi.org/10.1140/epjp/s13360-020-01063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-01063-7

Navigation