Skip to main content
Log in

Synchrotron micro-XRD applied for the characterization of pottery from the Neolithic to Chalcolithic transitional period: a case study from Tappeh Zaghe, Iran

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The production of pottery represented a significant pyro-technological progress in the ancient world. Two types of characteristics pottery from the transitional period (Neolithic to Chalcolithic) found at the Tappeh Zaghe in northern Iran were analyzed in order to investigate newly formed phases produced during the firing stage of pottery. This might have been a sign of technological evaluation through transitional period. Petrographic analysis, coupled with multi-image analysis, X-ray powder diffraction and environmental scanning electron microscope with energy-dispersive X-rays (ESEM-EDX) provided information on the compassion and microstructure of ceramic samples. Synchrotron micro-XRD beamline allowed the spatial mapping of crystalline phases from near surface (at the surface) into the matrix of potteries and the detection of minute, major and minor phases. The mineralogical interaction between various primary phases and decomposition regard carbonate reaction within the potteries fabrication in the as-received. New phases were followed across the wall thickness which were achieved by sintering (partial or total) and show a clear transition from outer side to the core of the pottery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

This manuscript has no associated data in data repository

Notes

  1. DMS coordinates: 35° 46′ 48″ N and 49° 56′ 23″ E (Google maps).

  2. DMS coordinates: 36° 17′ 04″ N and 47° 44′ 17″ E (Google maps).

  3. DMS coordinates: 35° 46′ 23″ N and 49° 56′ 16″ E (Google maps).

  4. DMS coordinates: 35° 36′ 37″ N and 51° 26′ 59″ E (Google maps).

References

  1. M.S. Tite, Archaeometry 50(2), 216 (2008)

    Article  Google Scholar 

  2. J. Letsch, W. Noll, Neues Jahrb. Mineral. Abh. 147(2), 109 (1983)

    Google Scholar 

  3. M.S. Tite, J. Archaeol. Method Theory 6(3), 181 (1999)

    Article  Google Scholar 

  4. M. Maggetti, CHIMIA Int. J. Chem. 55(11), 923 (2001)

    Article  Google Scholar 

  5. M.M. Voigt, R.H. Dayson, in Chronology in Old World Archaeology, ed. by R.W. Ehrich (The University of Chicago Press, Chicago, 1992)

    Google Scholar 

  6. J. Riederer, Echt oder falsch? (Springer, Berlin, 1994)

    Book  Google Scholar 

  7. A. Schmidt, H. Fazeli, Archaeol. Prospec. 14(1), 38 (2007)

    Article  Google Scholar 

  8. H.F. Nashli, A. Beshkani, A. Markosian, H. Ilkani, R. Abbasnegad Seresty, R. Young, Archäologische Mitteilungen aus Iran und Turan 41, 1 (2009)

    Google Scholar 

  9. H. Talai, Iran. Antiqua 19, 31 (1984)

    Google Scholar 

  10. R. Coningham, H. Fazeli, R. Young, R. Donahue, Iran 42, 1–12 (2004)

    Article  Google Scholar 

  11. N. Fazeli, M. Vidale, G. Guida, R. Coningham, Archaologische mitteilungen aus Iran und Turan 42, 87 (2010)

    Google Scholar 

  12. E. Negahban, Marlik 2, 26 (1977)

    Google Scholar 

  13. S. Malek Shahmirzadi, University Pennsylvania, 1977

  14. A.M. Pollard, H. Davoudi, I. Mostafapour, H.R. Valipour, H.F. Nashli, Int. J. Humanit. 19(3), 110 (2012)

    Google Scholar 

  15. M. Mashkour, M. Fontugne, C. Hatte, Antiquity 73(279), 65 (1999)

    Article  Google Scholar 

  16. M. Daghmehchi, H. Omrani, M. Emami, J. Nokandeh, Mater. Charact. 120, 143 (2016)

    Article  Google Scholar 

  17. M. Maggetti, C. Neururer, D. Ramseyer, Appl. Clay Sci. 53(3), 500 (2011)

    Article  Google Scholar 

  18. M. Maggetti, D. Morin, V. Serneels, C. Neururer, Stud. Univ. Babeş-Bolyai Geol. 54(2), 2 (2009)

    Google Scholar 

  19. L.A. Ortega, M.C. Zuluaga, A. Alonso-Olazabal, X. Murelaga, A. Alday, Archaeometry 52, 987–1001 (2010)

    Google Scholar 

  20. A.M. Pollard, H.F. Nashli, H. Davoudi, S. Sarlak, B. Helwing, F. Saeidi, Archäologische Mitteilungen aus Iran und Turan 45, 27 (2013)

    Google Scholar 

  21. A. Alizadeh, Y. Majidzadeh, S.M. Shahmirzadi, E.O. Negahban, The Iranian World: Essays on Iranian Art and Archaeology Pres. to Ezat O. Negahban (Iran University Press, Tehran, 1999)

    Google Scholar 

  22. M. Azarnoush, B. Helwing, Archäologische Mitteilungen aus Iran und Turan 37, 189 (2005)

    Google Scholar 

  23. A.K. Marghussian, H. Fazeli, H. Sarpoolaky, Archaeometry 51(5), 733 (2009)

    Article  Google Scholar 

  24. E.H. Wong, C.A. Petrie, H. Fazeli, Iran 48, 11 (2010)

    Article  Google Scholar 

  25. A. Marghussian, R. Coningham, H. Fazeli, Archaeometry 59(2), 222 (2017)

    Article  Google Scholar 

  26. H. Fazeli Nashli, E. Hi Yan Wong, and H. Azizi Kharanaghi, H. Fazeli Nashli, E. Hi Yan Wong, and H. Azizi Kharanaghi, in ‘My Life is like the Summer Rose’ Maurizio Tosi e l’Archeologia come modo di vivere Papers in honour of Maurizio Tosi for his 70th birthday, ed. by C. C. Lamberg-Karlovsky, B. Genito, B. Cerasetti (BAR International Series 2690, 2014), pp. 233–248

  27. M. Emami, R. Trettin, Surf. Eng. 29(2), 134 (2013)

    Article  Google Scholar 

  28. S. Amicone, M. Radivojević, P.S. Quinn, C. Berthold, T. Rehren, J. Archaeol. Sci. 118, 105123 (2020)

    Article  Google Scholar 

  29. R. Di Febo, J. Molera, T. Pradell, O. Vallcorba, J.C. Melgarejo, C. Capelli, Eur. J. Mineral. 29(5), 861 (2017)

    Article  Google Scholar 

  30. B.H. Toby, Powder Diffr. 21(1), 67 (2006)

    Article  ADS  Google Scholar 

  31. T. Pradell, J. Molera, N. Salvadó, A. Labrador, Appl. Phys. A 99(2), 407 (2010)

    Article  ADS  Google Scholar 

  32. S. Quartieri, in Synchrotron Radiation: Basics, Methods and Applications, chap. 26, ed. by S. Mobilio, F. Boscherini, C. Meneghini (eds.) (Springer, Berlin, Heidelberg 2015), pp. 677–695

  33. J. Rius, A. Labrador, A. Crespi, C. Frontera, O. Vallcorba, J.C. Melgarejo, J. Synchrotron Radiat. 18(6), 891 (2011)

    Article  Google Scholar 

  34. F. Fauth, I. Peral, C. Popescu, M. Knapp, Powder Diffr. 28(S2), S360 (2013)

    Article  ADS  Google Scholar 

  35. O. Vallcorba, J. Rius, J. Appl. Crystallogr. 52(2), 478 (2019)

    Article  Google Scholar 

  36. G. Szakmany, E. Starnini, Archeometriai Műhely 2, 5 (2007)

    Google Scholar 

  37. M. Emami, in Presented at the IOP Conference Series: Materials Science and Engineering, 2012 (unpublished)

  38. S. Noghani, M. Emami, Period. Mineral. 83(2), 171 (2014)

    Google Scholar 

  39. B. Fabbri, S. Gualtieri, S. Shoval, J. Eur. Ceram. Soc. 34(7), 1899 (2014)

    Article  Google Scholar 

  40. A. Basu, S.W. Young, L.J. Suttner, W.C. James, G.H. Mack, J. Sediment. Res. 45(4), 873 (1975)

    Google Scholar 

  41. R.B. Mason, Archaeometry 37(2), 307 (1995)

    Article  Google Scholar 

  42. C. Munita, A. Nascimento, S. Schreiber, S. Luna, P. Oliveira, J. Radioanal. Nuclear Chem. 259(2), 305 (2004)

    Article  Google Scholar 

  43. K. Urumović, K. Urumović Sr., Hydrol. Earth Syst. Sci. Dis. 11(6), 6675 (2014)

    ADS  Google Scholar 

  44. M. Tite, Y. Maniatis, Nature 257(5522), 122 (1975)

    Article  ADS  Google Scholar 

  45. A. Hein, I. Karatasios, N.S. Müller, V. Kilikoglou, Thermochim. Acta 573, 87 (2013)

    Article  Google Scholar 

  46. Y. Maniatis, M. Tite, Thera Aegaen World 1, 4839 (1978)

    Google Scholar 

  47. Y. Maniatis, M.S. Tite, J. Archaeol. Sci. 8(1), 59 (1981)

    Article  Google Scholar 

  48. P. Keblinski, S. Phillpot, D. Wolf, H. Gleiter, Phys. Rev. Lett. 77(14), 2965 (1996)

    Article  ADS  Google Scholar 

  49. S. Emami, T. Kowald, R. Trettin, Mater. Manuf. Processes 24(9), 934 (2009)

    Article  Google Scholar 

  50. M. Emami, R. Trettin, Period. Mineral. 81(3), 359 (2012)

    Google Scholar 

  51. Z. Ntah, R. Sobott, B. Fabbri, K. Bente, Cerâmica 63(367), 413 (2017)

    Article  Google Scholar 

  52. M. Amadori, C. Del Vais, P. Fermo, P. Pallante, Environ. Sci. Pollut. Res. 24(16), 13921 (2017)

    Article  Google Scholar 

  53. G. Cultrone, C. Rodriguez-Navarro, E. Sebastian, O. Cazalla, M.J. De La Torre, Eur. J. Mineral. 13(3), 621 (2001)

    Article  ADS  Google Scholar 

  54. W.A. Deer, J. Bowles, R.A. Howie, D. Vaughan, and J. Zussman, 2011 (unpublished)

  55. D.L. Whitney, B.W. Evans, Am. Miner. 95(1), 185 (2010)

    Article  ADS  Google Scholar 

  56. K.G. Böttger, F. Thiedig, D. Knöfel, Restor. Build. Monuments 8(1), 19 (2002)

    Article  Google Scholar 

  57. L. Maritan, Archaeol. Anthropol. Sci. 12(8), 1–12 (2020)

    Google Scholar 

  58. I. Karatasios, A. Hein, N.S. Müller, P. Triantafyllides, V. Kilikoglou, Appl. Clay Sci. 82, 37 (2013)

    Article  Google Scholar 

  59. C. Tschegg, T. Ntaflos, I. Hein, Appl. Clay Sci. 43(1), 69 (2009)

    Article  Google Scholar 

  60. M. Daghmehchi, A. Guido, A. Mastandrea, M.A. Salahi, M. Omrani, J. Nokandeh, Mater. Charact. 130, 81 (2017)

    Article  Google Scholar 

  61. M. Daghmehchi, C. Rathossi, H. Omrani, M. Emami, M. Rahbar, Appl. Clay Sci. 162, 146 (2018)

    Article  Google Scholar 

  62. C. Rathossi, Y. Pontikes, J. Eur. Ceram. Soc. 30(9), 1841 (2010)

    Article  Google Scholar 

  63. C.M. Belfiore, M. Di Bella, M. Triscari, M. Viccaro, Mater. Charact. 61(4), 440 (2010)

    Article  Google Scholar 

  64. H. Baccour, M. Medhioub, F. Jamoussi, T. Mhiri, J. Mater. Process. Technol. 209(6), 2812 (2009)

    Article  Google Scholar 

  65. S.M. Emami, R. Trettin, J. Adv. Microsc. Res. 5(3), 181 (2010)

    Article  Google Scholar 

  66. R.L. Coble, J. Appl. Phys. 32(5), 793 (1961)

    Article  ADS  Google Scholar 

  67. L. Maritan, L. Nodari, C. Mazzoli, A. Milano, U. Russo, Appl. Clay Sci. 31(1–2), 1 (2006)

    Article  Google Scholar 

  68. C. Rathossi, P. Tsolis-Katagas, C. Katagas, Appl. Clay Sci. 24(3–4), 313 (2004)

    Article  Google Scholar 

  69. W. Noll, R. B. Heimann, Ancient Old World Pottery, Schweizerbart Science Publisher (2016)

  70. C. Rathossi, Y. Pontikes, J. Eur. Ceram. Soc. 30(9), 1853 (2010)

    Article  Google Scholar 

  71. W. Noll, Alte Keramiken und ihre Pigmente, Studien zu Material und Technologie (Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 1991)

    Google Scholar 

  72. M. Dondi, G. Ercolani, B. Fabbri, M. Marsigli, Clay Miner. 33(3), 443 (2018)

    Article  ADS  Google Scholar 

  73. M. Riccardi, B. Messiga, P. Duminuco, Appl. Clay Sci. 15(3–4), 393 (1999)

    Article  Google Scholar 

  74. G. Gouadec, P. Colomban, Prog. Cryst. Growth Charact. Mater. 53(1), 1 (2007)

    Article  Google Scholar 

  75. P. Colomban, N.Q. Liem, G. Sagon, H.X. Tinh, T.B. Hoành, J. Cult. Herit. 4(3), 187 (2003)

    Article  Google Scholar 

  76. L. Nodari, L. Maritan, C. Mazzoli, U. Russo, Appl. Clay Sci. 27(1–2), 119 (2004)

    Article  Google Scholar 

  77. T. Pradell, J. Molera, G. Molina, M.S. Tite, Appl. Clay Sci. 82, 106 (2013)

    Article  Google Scholar 

  78. M.S. Tite, I.C. Freestone, N. Wood, Archaeometry 54(1), 37 (2012)

    Article  Google Scholar 

  79. A. Hein, V. Kilikoglou, Procedia Struct. Integr. 10, 219 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by proposal ID 2017062250 at BL04-MSPD beamline, ALBA, Spain. This research has also been financially supported by the Ministry of Science, Research and Technology, and the Institute for Research in Fundamental Sciences (IPM), Tehran, Iran, in collaboration with ALBA Synchrotron, Barcelona, Spain. This project has been run and supported by Horizon 2020. The authors are sincerely thankful to the beamline scientists at BL04–MSPD in ALBA synchrotron. Special thanks are expressed to Prof. Javad Rahigi from IPM, Iran, and Prof. Miguel Aranda, the scientific director of ALBA, for all his collaboration and help in this project. Hereby, the corresponding author acknowledges the support from IdEx Fellowship program of the University Bordeaux during my scientific stay at IRAMAT-CRP2A, Institut de Recherche sur les Archéomatériaux, University Bordeaux Montaigne (France). The authors gratefully acknowledge anonymous reviewers for kindly proofreading this article and indicating important highlights to accomplish this paper; any remaining errors are our own.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadamin Emami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami, M., Vallcorba, O., Rozatian, A.S.H. et al. Synchrotron micro-XRD applied for the characterization of pottery from the Neolithic to Chalcolithic transitional period: a case study from Tappeh Zaghe, Iran. Eur. Phys. J. Plus 136, 63 (2021). https://doi.org/10.1140/epjp/s13360-020-01035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-01035-x

Navigation