Skip to main content
Log in

Propagation of dust-acoustic nonlinear waves in a superthermal collisional magnetized dusty plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The nonlinear features of dust-acoustic waves (DAWs) propagating in a multicomponent, collisional, magnetized dusty plasma whose constituents are negative dust grains, superthermal ions, and electrons are investigated. The hydrodynamic fluid equations are reduced to a damped Zakharov–Kuznetsov (DZK) equation, using the reductive perturbation technique. The DZK equation is solved using both the generalized \((G^{{\prime }}/G)\)–expansion method and the Painlevé analysis method. Each method gives a class of solutions. This indicates that these methods are sufficient to give all possible solutions of the DZK equation. These solutions successfully describe different kinds of nonlinear waves such as explosive, soliton, shocklike, periodical, and cnoidal waves. Additionally, the effects of different plasma parameters such as relative densities and temperatures as well as superthermality parameters of ions and electrons on the behavior of the obtained diverse waves are investigated. The relevance of the present investigation can be used to understand the cosmic dust-laden plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.S. Afify, W.M. Moslem, R.E. Tolba, M.A. Hassouba, Chaos Solitons Fractals 124, 18 (2019). https://doi.org/10.1016/j.chaos.2019.04.032

  2. J. Weiss, M. Tabor, G. Carnevale, J. Math. Phys. 3, 522 (1983). https://doi.org/10.1063/1.525721

  3. M.D. Kruskal, N. Joshi, R. Halburd, Analytic and asymptotic methods for nonlinear singularity analysis: a review and extensions of tests for the Painlev é property in Integrability of Nonlinear Systems, vol. 495 of Lecture Notes in Physics 171– 205 (Springer Berlin Germany, 1997). https://doi.org/10.1007/BFb0113696

  4. A. Bekir, A.C. Cevikel, Commun. Nonlinear Sci. Numer. Simul. 14, 1804 (2009). https://doi.org/10.1016/j.cnsns.2008.07.004

  5. S.A. El-wakil, M.A. Madkour, M.A. Abdou, Phys. Lett. A 369, 62 (2007). https://doi.org/10.1016/j.physleta.2007.04.07

  6. Z. Yan, H.Q. Zhang, Phys. Lett. A 285, 355 (2001). https://doi.org/10.1016/S0375-9601(01)00376-0

  7. Y.Y. Chen, Q. Wang, Chaos Solitons Fractals 24, 745 (2005). https://doi.org/10.1016/j.chaos.2004.09.014

  8. C. Rogers, W.F. Shadwick, Backlund Transformations and Their Applications (Academic Press, New York, 1982). https://doi.org/10.1137/1026024

  9. R. Hirota, Phys. Rev. Lett. 18, 1192 (1971). https://doi.org/10.1103/PhysRevLett.27.1192

  10. R. Sabry, M.A. Zahran, E. Fan, Phys. Lett. A 326, 326 (2004). https://doi.org/10.1016/j.physleta.2004.04.002

  11. R. Sabry, W.M. Moslem, P.K. Shukla, Phys. Lett. A 372, 5691 (2008). https://doi.org/10.1016/j.physleta.2008.06.09

  12. M. Wang, X. Li, J. Zhang, Phys. Lett. A 372, 417 (2008). https://doi.org/10.1016/j.physleta.2007.07.05

  13. S.M. Ahmed, E.R. Hassib, U.M. Abdelsalam, R.E. Tolba, W.M. Moslem, Phys. Plasmas 27, 082903 (2020). https://doi.org/10.1063/5.0009605

  14. M.A. Abdou, Chaos Solitons Fractals 31, 95 (2007). https://doi.org/10.1016/j.chaos.2005.09.030

  15. U.M. Abdelsalam, M.G.M. Ghazal, Mathematics 7, 729 (2019). https://doi.org/10.3390/math7080729

  16. S.K. El-Labany, W.M. Moslem, Phys. Scr. 65, 416 (2002). https://doi.org/10.1238/Physica.Regular.065a00416

  17. S. Kumar, D. Kumar, Comp. Math. Appl. 77, 2096 (2019). https://doi.org/10.1016/j.camwa.2018.12.009

  18. S. Kumar, M. Niwasby, A.M. Wazwaz, Phys. Scr. 95, 095204 (2020). https://doi.org/10.1088/1402-4896/aba5ae

  19. S. Kumar, M. Kumar, D. Kumar, Pramana J. Phys. 94, 28 (2020). https://doi.org/10.1007/s12043-019-1894-0

  20. D. Kumar, S. Kumar, Eur. Phys. J. Plus 135, 162 (2020). https://doi.org/10.1140/epjp/s13360-020-00218-w

  21. S. Kumar, A. Kumar, H. Kharband, Phys. Scr. 95, 6 (2020). https://doi.org/10.1088/1402-4896/ab7f48

  22. B. Ghanbari, M.S. Osman, D. Baleanu, Mod. Phys. Lett. A 34, 1950155 (2019). https://doi.org/10.1142/S0217732319501554

  23. E. Aksoya, M. Kaplanb, A. Bekirb, Waves Random Complex Media 26, 2 (2016). https://doi.org/10.1080/17455030.2015.1125037

  24. S. Charnoz, Icarus 201, 191 (2009). https://doi.org/10.1016/j.icarus.2008.12.036

  25. Abeer A. Mahmoud, R.E. Tolba, Chaos Solitons Fractals 118, 320 (2019). https://doi.org/10.1016/j.chaos.2018.12.004

  26. G. Gronoff, J. Lilensten, L. Desorgher, E. Flückiger, Astron. Astrophys. 506, 965 (2009). https://doi.org/10.1051/0004-6361/200912125

  27. Saha Asit, Chatterjee Prasanta, Braz. J. Phys. 45, 419 (2015). https://doi.org/10.1007/s13538-015-0329-8

  28. S.K. El-Labany, W.M. Moslem, F.M. Safi, Phys. Plasmas 13, 082903 (2006). https://doi.org/10.1063/1.2336183

  29. R.E. Tolba, W.M. Moslem, A.A. Elsadany, N.A. El-Bedwehy, S.K. El-Labany, IEEE Trans. Plasma Sci. 9, 45 (2017). https://doi.org/10.1109/TPS.2017.2733085

  30. N.S. Saini, I. Kourakis, Phys. Plasmas 15, 123701 (2008). https://doi.org/10.1063/1.3033748

  31. S. Sultana, I. Kourakis, N. Saini, M.A. Hellberg, Phys. Plasmas 17, 032310 (2010). https://doi.org/10.1063/1.3322895

  32. N. Ahmadihojatabad, H. Abbasi, H. Hakimi Pajouh, Phys. Plasmas 17, 112305 (2010). https://doi.org/10.1063/1.3503664

  33. T.K. Baluku, M.A. Hellberg, Phys. Plasmas 15, 123705 (2008). https://doi.org/10.1063/1.3042215

  34. M.A. Hellberg, R.L. Mace, T.K. Baluku, I. Kourakis, N.S. Saini, Phys. Plasmas 16, 094701 (2009). https://doi.org/10.1063/1.3213388

  35. S.A. El-Tantawy, N.A. El-Bedwehy, W.M. Moslem, Phys. Plasmas 18, 052113 (2011). https://doi.org/10.1063/1.3592255

  36. S.A. Morsi, W.M. Moslem, A.S. El-Said, H. Bahlouli, Phys. Scr. 95, 095602 (2020). https://doi.org/10.1088/1402-4896/aba865

  37. W.M. Moslem, S. Rezk, U.M. Abdelsalam, S.K. El-Labany, Adv. Space Res. 61, 2190 (2018). https://doi.org/10.1016/j.asr.2018.01.023

  38. S.A. Büyükasık, O.K. Pashaev, Commun. Nonlinear Sci. Numer. Simul. 18, 1635 (2013). https://doi.org/10.1016/j.cnsns.2012.11.027

  39. R.S. Zola, J.C. Dias, L.R. Evangelista, M.K. Lenzi, L.R. Silva, Physica A 387, 2690 (2008). https://doi.org/10.1016/j.physa.2008.01.080

  40. A. Schulze-Halberg, J.M. Jimenez, Phys. Scr. 80, 065014 (2009). https://doi.org/10.1088/0031-8949/80/06/065014

  41. R.E. Tolba, N.A. El-Bedwehy, W.M. Moslem, S.K. El-Labany, M.E. Yahia, Phys. Plasmas 23, 012111 (2016). https://doi.org/10.1063/1.4940346

  42. W.M. Moslem, W.F. El-Taibany, E.K. El-Shewy, E.F. El-Shamy, Phys. Plasmas 12, 052318 (2005). https://doi.org/10.1063/1.1897716

  43. R. Sabry, W.M. Moslem, F. Haas, S. Ali, P.K. Shukla, Phys. Plasmas 15, 122308 (2008). https://doi.org/10.1063/1.3037265

  44. W.M. Moslem, Chaos Solitons Fractals 939 (2005). https://doi.org/10.1016/j.chaos.2004.06.004

  45. R. Sabry, W.M. Moslem, P.K. Shukla, Phys. Rev. E 86, 036408 (2012) . https://doi.org/10.1103/PhysRevE.86.036408

  46. R. Sabry, W.M. Moslem, P.K. Shukla, Plasma Phys. Controlled Fusion 54, 035010 (2012). https://doi.org/10.1088/0741-3335/54/3/035010

  47. W.M. Moslem, Phys. Plasmas 10, 3168 (2003). https://doi.org/10.1063/1.1591768

  48. W.M. Moslem, Phys. Lett. A 351, 290 (2006). https://doi.org/10.1016/j.physleta.2005.10.10

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reda E. Tolba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolba, R.E. Propagation of dust-acoustic nonlinear waves in a superthermal collisional magnetized dusty plasma. Eur. Phys. J. Plus 136, 138 (2021). https://doi.org/10.1140/epjp/s13360-020-01028-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-01028-w

Navigation