Skip to main content
Log in

Effect of Stark shift on nonlocal correlation of two atoms in a cavity containing a parametric amplifier and a Kerr like medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

An analytical solution is obtained for a system consisting of two atoms interacting with a nondegenerate parametric amplifier of a cavity field containing a Kerr like medium in the presence of Stark shift terms. The nonlinearity of the interaction leads to the generation of different nonlocal correlations (NLCs) beyond entanglement concurrence, which are measured by uncertainty-induced quantum nonlocality and maximal Bell’s function. It is found that the generation of the NLCs, due to the atom-cavity unitary interaction, can be controlled by the nonlinearity of the Kerr like medium and the Stark shift. The Kerr like medium and the Stark shift lead to reduce the regularity and the amount of the generated nonlocal correlations. The reduction in the generated nonlocal correlations, due to the Kerr like medium, is increased by the increase in the Stark shift parameter and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  2. H.I. Yoo, J.H. Eberly, Phys. Rep. 118, 239 (1985)

    Article  ADS  Google Scholar 

  3. S.J.D. Phoenix, P.L. Knight, Phys. Rev. Lett. 66, 2833 (1991)

    Article  ADS  Google Scholar 

  4. S.J.D. Phoenix, P.L. Knight, Phys. Rev. A 44, 6023 (1991)

    Article  ADS  Google Scholar 

  5. A.-S.F. Obada, F.A. Mohammed, H.A. Hessian, A.-B.A. Mohamed, Int. J. Theor. Phys. 46, 1027 (2007)

    Article  Google Scholar 

  6. M. Ban, Opt. Soc. Am. B 10, 1347 (1993)

    Article  ADS  Google Scholar 

  7. C. Gerry, P. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  8. A.-S.F. Obada, M.S. Abdalla, E.M. Khalil, Physica A 336(3–4), 433 (2004)

    Article  ADS  Google Scholar 

  9. E.M. Khalil, M.S. Abdalla, A.-S.F. Obada, Ann. Phys. 321, 421 (2006)

    Article  ADS  Google Scholar 

  10. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  11. M. Kargarian, R. Jafari, A. Langari, Phys. Rev. A 76, 060304 (2007)

    Article  ADS  Google Scholar 

  12. A.-B.A. Mohamed, H.A. Hessian, H. Eleuch, Chaos Solitons Fractals 135, 109773 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  13. A.-B.A. Mohamed, A. Joshi, S.S. Hassan, J. Phys. A Math. Theor. 47, 335301 (2014)

    Article  Google Scholar 

  14. A.-B.A. Mohamed, H. Eleuch, C.H. Raymond Ooi, Phys. Lett. A 383, 125905 (2019)

    Article  MathSciNet  Google Scholar 

  15. J.F. Clauser, M.A. Horne, A. Shimony, Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  16. S. Luo, Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  17. S. Luo, S. Fu, Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

  18. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  19. L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  20. M.-L. Hu, X. Hu, J. Wang, Y. Peng, Y.-R. Zhang, H. Fan, Phys. Rep. 762, 1 (2018)

    ADS  MathSciNet  Google Scholar 

  21. F.M. Paula, T.R. de Oliveira, Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  22. A.-B.A. Mohamed, N. Metwally, Eur. Phys. J. Plus 134, 92 (2019)

    Article  Google Scholar 

  23. A.-B.A. Mohamed, H. Eleuch, C.H. Raymond Ooi, Sci. Rep. 9, 19632 (2019)

    Article  ADS  Google Scholar 

  24. Z. Xi, X. Wang, Y. Li, Phys. Rev. A 85, 042325 (2012)

    Article  ADS  Google Scholar 

  25. L. Li, Q.W. Wang, S.Q. Shen, M. Li, Europhys. Lett. 114, 10007 (2016)

    Article  ADS  Google Scholar 

  26. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  27. C.H. Bennett, G. Brassard, C. Crpeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  28. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 84, 4729 (2000)

    Article  ADS  Google Scholar 

  29. M. Murao, D. Jonathan, M.B. Plenio, V. Vedral, Phys. Rev. A 59, 156 (1999)

    Article  ADS  Google Scholar 

  30. V. Vedral, M.B. Plenio, M.A. Rippin, P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  31. D. Braun, Phys. Rev. Lett. 89, 277901 (2002)

    Article  Google Scholar 

  32. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  33. A.-B.A. Mohamed, Eur. Phys. J. D 71, 261 (2017)

    Article  ADS  Google Scholar 

  34. A.-B.A. Mohamed, Quantum Inf. Process. 17, 96 (2018)

    Article  ADS  Google Scholar 

  35. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  36. E.P. Wigner, M.M. Yanase, Proc. Natl. Acad. Sci. USA 49, 910 (1963)

    Article  ADS  Google Scholar 

  37. D. Girolami, T. Tufarelli, G. Adesso, Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  38. S.-X. Wu, J. Zhang, C.-S. Yu, H.-S. Song, Phys. Lett. A 378, 344 (2014)

    Article  ADS  Google Scholar 

  39. D. Poderini, I. Agresti, G. Marchese, E. Polino, T. Giordani, A. Suprano, M. Valeri, G. Milani, N. Spagnolo, G. Carvacho, R. Chaves, F. Sciarrino, Nat. Commun. 11, 2467 (2020)

    Article  ADS  Google Scholar 

  40. A.-B.A. Mohamed, H. Eleuch, Phys. Scr. 92, 065101 (2017)

    Article  ADS  Google Scholar 

  41. R. Horodecki, P. Horodecki, M. Horodecki, Phys. Lett. A 200, 340 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  42. A.-S.F. Obada, A.-B.A. Mohamed, Opt. Commun. 285, 3027 (2012)

    Article  ADS  Google Scholar 

  43. T. Yu, J.H. Eberly, Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  44. A.-B.A. Mohamed, H.A. Hessian, A.-S.F. Obada, Physica A 390, 519 (2011)

    Article  ADS  Google Scholar 

  45. V. Buz̆ek, I. Jex, Opt. Commun. 78, 425 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No. 2020/01/11801. The authors are very grateful to the referees and the editor for their constructive remarks, which have helped to improve the manuscript. Taif University Researchers Supporting Project number (TURSP-2020/17), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-B. A. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, AB.A., Khalil, E.M. Effect of Stark shift on nonlocal correlation of two atoms in a cavity containing a parametric amplifier and a Kerr like medium. Eur. Phys. J. Plus 135, 793 (2020). https://doi.org/10.1140/epjp/s13360-020-00801-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00801-1

Navigation