Skip to main content
Log in

Generalized sedeonic equations of hydrodynamics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present a generalization of the equations of hydrodynamics based on the noncommutative algebra of space-time sedeons. It is shown that for vortex-less flow the system of Euler and continuity equations is represented as a single nonlinear sedeonic second-order wave equation for scalar and vector potentials, which is naturally generalized on viscous and vortex flows. As a result we obtained the closed system of four equations describing the diffusion damping of translational and vortex motions. The main peculiarities of the obtained equations are illustrated on the basis of the plane wave solutions describing the propagation of sound waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Helmholtz, Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. R. Angew. Math. 55, 25–55 (1858). Translation: P.G.Tait – On integrals of the hydrodynamical equations, which express vortex-motion. Philosophical Magazine, 33(4) 485-512 (1867)

    MathSciNet  Google Scholar 

  2. J.G. Logan, Hydrodynamic analog of the classical field equations. Phys. Fluids 5, 868–869 (1962)

    Article  ADS  Google Scholar 

  3. H. Marmanis, Analogy between the Navier-Stokes equations and Maxwells equations: application to turbulence. Phys. Fluids 10, 1428–1437 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Kambe, A new formulation of equation of compressible fluids by analogy with Maxwell’s equations. Fluid Dyn. Res. 42, 055502 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. T. Kambe, On fluid Maxwell equations, in Frontiers of Fundamental Physics and Physics Education Research, vol. 145, Springer Proceedings in Physics, ed. by B.G. Sidharth, M. Michelini, L. Santi (Springer, Heidelberg, 2014), pp. 287–296

    Chapter  Google Scholar 

  6. S. Demir, M. Tanışlı, Spacetime algebra for the reformulation of fluid field equations. Int. J. Geometric Methods Modern Phys. 14, 1750075 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Thompson, T. Moeller, Numerical and closed-form solutions for the Maxwell equations of incompressible flow. Phys. Fluids 30, 083606 (2018)

    Article  ADS  Google Scholar 

  8. A.C.R. Mendes, F.I. Takakura, E.M.C. Abreu, J.A. Neto, Compressible fluids with Maxwell-type equations, the minimal coupling with electromagnetic field and the Stefan-Boltzmann law. Ann. Phys. 380, 12–22 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. A.C.R. Mendes, F.I. Takakura, E.M.C. Abreu, J.A. Neto, P.P. Silva, J.V. Frossad, Helicity and vortex generation. Ann. Phys. 398, 146–158 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Tanışlı, S. Demir, N. Sahin, Octonic formulations of Maxwell type fluid equations. J. Math. Phys. 56, 091701 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. V. Majernik, Quaternionic formulation of the classical fields. Adv. Appl. Clifford Algebras 9(1), 119–130 (1999)

    Article  MathSciNet  Google Scholar 

  12. S.M. Grudsky, K.V. Khmelnytskaya, V.V. Kravchenko, On a quaternionic Maxwell equation for the time-dependent electromagnetic field in a chiral medium. J. Phys. A Math. Gen. 37(16), 4641–4647 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  13. Z.-H. Weng, Field equations in the complex quaternion spaces. Adv. Math. Phys. 450262 (2014)

  14. M.E. Kansu, M. Tanışlı, S. Demir, Quaternionic comparisons of electromagnetism using Lorentz transformations. Eur. Phys. J. Plus. 135, 187 (2020)

    Article  Google Scholar 

  15. A. Gamba, Maxwell’s equations in octonion form. Nuovo Cimento A 111(3), 293–302 (1998)

    ADS  Google Scholar 

  16. B.C. Chanyal, P.S. Bisht, O.P.S. Negi, Generalized octonion electrodynamics. Int. J. Theor. Phys. 49(6), 1333–1343 (2010)

    Article  MathSciNet  Google Scholar 

  17. S. Demir, M. Tanışlı, N. Candemir, Hyperbolic quaternion formulation of electromagnetism. Adv. Appl. Clifford Algebras 20(3–4), 547–563 (2010)

    Article  MathSciNet  Google Scholar 

  18. B.C. Chanyal, Split octonion reformulation of generalized linear gravitational field equations. J. Math. Phys. 56, 051702 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. K. Imaeda, M. Imaeda, Sedenions: algebra and analysis. Appl. Math. Comput. 115, 77–88 (2000)

    MathSciNet  MATH  Google Scholar 

  20. S. Demir, M. Tanışlı, Sedenionic formulation for generalized fields of dyons. Int. J. Theor. Phys. 51(4), 1239–1252 (2012)

    Article  Google Scholar 

  21. V.L. Mironov, S.V. Mironov, Reformulation of relativistic quantum mechanics equations with non-commutative sedeons. Appl. Math. 4(10C), 53–60 (2013)

    Article  Google Scholar 

  22. S.V. Mironov, V.L. Mironov, Sedeonic equations of massive fields. Int. J. Theor. Phys. 54(1), 153–168 (2015)

    Article  MathSciNet  Google Scholar 

  23. V.L. Mironov, S.V. Mironov, Gauge invariance of sedeonic equations for massive and massless fields. Int. J. Theor. Phys. 55(7), 3105–3119 (2016)

    Article  MathSciNet  Google Scholar 

  24. V.L. Mironov, S.V. Mironov, Sedeonic equations in field theory. Adv. Appl. Clifford Algebras 30(44), 1–26 (2020)

    MathSciNet  MATH  Google Scholar 

  25. A. Macfarlane, Hyperbolic quaternions (Proceedings of the Royal Society at Edinburgh, 1899–1900 session, 1900), pp. 169–181

  26. P.A.M. Dirac, The quantum theory of the electron. Proc. R. Soc. Lond. Ser. A 117(778), 610–624 (1928)

    Article  ADS  Google Scholar 

  27. L.D. Landau, E.M. Lifshits, Fluid Mechanics, 2nd edn. (Pergamon Press, London, 1987)

    MATH  Google Scholar 

  28. D. Kondepudi, I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, Hoboken, 2015)

    MATH  Google Scholar 

  29. L.M. Milne-Thomson, Theoretical Hydrodynamics, 4th edn. (Macmillan and Co. LTD, London, 1960)

    MATH  Google Scholar 

  30. D. Kleckner, W.T.M. Irvine, Creation and dynamics of knotted vortices. Nat. Phys. 9, 253–258 (2013)

    Article  Google Scholar 

  31. V.L. Mironov, S.V. Mironov, Sedeonic equations of ideal fluid. J. Math. Phys. 58, 083101 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Bear, Y. Bachmat, The general equation of hydrodynamic dispersion. J. Geophys. Res. 69, 2561–2567 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  33. T. Stocker, Introduction to Climate Modeling (Springer, Heidelberg, 2011), p. 57

    Book  Google Scholar 

  34. M.W. Scheeler, W.M. van Rees, H. Kedia, D. Kleckner, W.T.M. Irvine, Complete measurement of helicity and its dynamics in vortex tubes. Science 357, 487–491 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very thankful to Galina Mironova for support and to reviewer for valuable and stimulating comments. Also we send our special thanks to EPJP editor Professor Tim Sluckin for suggestions and kind cooperation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Mironov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, V.L., Mironov, S.V. Generalized sedeonic equations of hydrodynamics. Eur. Phys. J. Plus 135, 708 (2020). https://doi.org/10.1140/epjp/s13360-020-00700-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00700-5

Navigation