Skip to main content
Log in

Viscous dissipation impact on electrical resistance heating distributed Carreau nanoliquid along stretching sheet with zero mass flux

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present paper envisages on the electric resistance heating distribution on three-dimensional Carreau dissipated NF along a nonlinear stretching sheet. The characteristics of heat and mass transfer are conferred by utilizing nonlinear radiation and zero mass flux. The passive control on NPhas its own application in drug targeting therapy. Convectively hot fluid is placed near the stretching sheet. The governing Prandtl boundary layer equations are modeled using relative laws and transformed to highly nonlinear ordinary differential equations with similarity conversion variables. The dependent variables in governing equation are solved by shooting method with R-K scheme. A comparative study of Pseudoplastic and Dilatant fluids is deliberated in this study. Varied physical parameters, whose behaviors on the velocity, energy and species concentration are analyzed. Shear thickening fluid nature superiors the shear thinning fluid nature when the fluid flow swifts, whereas energy exchange from the system is more in Dilatant fluid. Heat transfer rate is higher when the fluid flow swifts. Heat transfer from the fluid to the surface is slow as the Eckert number along both xy directions. The examination of present outcomes with the existing work has been made, which is good agreed. The present study reveals that the liquid stream velocity declines for the larger values of ratio of stretching rates parameter c and conflicting behavior is detected in tangential velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

B :

Magnetic induction strength (T)

\( B_{0} \) :

Uniform magnetic field strength (T)

C:

Concentration (kg/m3)

h f :

Coefficient of heat transfer

\( k \) :

Thermal conductivity (W/(m K))

k f :

Thermal conductivity (W/(m K))

\( k_{\text{e}} \) :

Mean absorption coefficient

n:

Index of flow behavior

p f :

Pressure (Pa)

T :

Temperature (K)

T f :

Hot fluid temperature

\( q_{\text{r}} \) :

Radiative heat flux (W/m2)

u,v,w :

Velocity components (m/s)

u w,v w :

Stretching velocities (m/s)

We:

Weissenberg number

x,y,z :

Cartesian co-ordinates

η :

Independent variable

f :

Axial velocity

g :

Tangential velocity

θ :

Temperature

θ w :

Nonlinear radiation parameter

ϕ :

Species concentration

c :

Stretching ratio parameter

Cfx :

LocalSkin friction along x-axis

Cfy :

LocalSkin friction along y-axis

C f :

Solutal wall concentration

C :

Solutal concentration away from fluid

Cpf :

Specific heat at constant pressure

D B :

Coefficient of mass diffusivity

D T :

Thermophoresis parameter

Ecx :

Eckert number along x-direction

Ecy :

Eckert number along y-direction

Le:

Lewis number

\( R \) :

Radiation parameter

m :

Nonlinear stretching parameter

Nb:

Brownian motion parameter

Nt:

Thermophoresis parameter

\( {\text{Nu}} \) :

Local Nusselt number

Pr:

Prandtl number

Rex :

Local Reynolds number along x-axis

Rey :

Local Reynolds number along y-axis

T :

Temperature far away fluid

α f :

Thermal diffusivity (m2/s)

γ :

Thermal Biot number

Γ:

Fluid parameter

μ f :

Dynamic viscosity (Pa s or kg/ms)

\( \nu \) :

Kinematic viscosity of basefluid (m2/s)

\( \rho C_{\text{p}} \) :

Heat capacitance (J/(kg K))

\( \sigma \) :

Electric conductivity (S/m)

σs :

Stefan–Boltzmann constant (W/m2K4)

ν f :

Kinematic viscosity (m2/s)

ρ f :

Density (kg/m3)

NF:

Nanofluid/NF

NP:

Nanoparticle

RK:

Runge–Kutta

CF:

Carreau fluid

PF:

Pseudoplastic fluid/pseudoplastic flow

DF:

Dilatant flow/dilatant fluid

References

  1. S. Chaudhary, K.M. Kanika, Viscous dissipation and Joule heating in MHD Marangoni boundary layer flow and radiation heat transfer of Cu–water nanofluid along particle shapes over an exponential temperature. Int. J. Comput. Math. 97(5), 943–958 (2020)

    Article  MathSciNet  Google Scholar 

  2. D.S. Sankar, U. Lee, A.K. Nagar, M. Morsidi, Mathematical analysis of Carreau fluid model for blood flow in tapered constricted arteries. AIP Conf. Proc. 1, 020128 (2016). https://doi.org/10.1063/1.5055530

    Article  Google Scholar 

  3. L. Dianchen, M. Mohammad, M. Ramzan, M. Bilal, F. Howari, M. Suleman, MHD boundary layer flow of Carreau fluid over a convectively heated bidirectional sheet with non-Fourier heat flux and variable thermal conductivity. Symmetry 11, 618 (2019). https://doi.org/10.3390/sym11050618

    Article  MATH  Google Scholar 

  4. D. Gopal, N. Kishan, Unsteady flow of a Carreau fluid over a shrinking cylinder in the occurrence of various parameter effects. AIP Conf. Proc. 2104(1), 020004 (2019). https://doi.org/10.1063/1.5100372

    Article  Google Scholar 

  5. M. Khan, Hashim, Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet. AIP Adv. 5(10), 107203 (2015). https://doi.org/10.1063/1.4932627

    Article  ADS  Google Scholar 

  6. B. Ramadevi, K. Anantha Kumar, V. Sugunamma, N. Sandeep, Influence of non-uniform heat source/sink on the three-dimensional magnetohydrodynamic Carreau fluid flow past a stretching surface with modified Fourier’s law. Pramana J. Phys. 93(6), 86 (2019). https://doi.org/10.1007/s12043-019-1847-7

    Article  ADS  Google Scholar 

  7. Hashim, H. Sardar, M. Khan, Mixed convection flow and heat transfer mechanism for non-Newtonian Carreau nanofluids under the effect of infinite shear rate viscosity. Phys. Scr. 95(3), 035225 (2020). https://doi.org/10.1088/1402-4896/ab41e9

    Article  Google Scholar 

  8. B. Mahanthesh, Magnetohydrodynamic flow of Carreau liquid over a stretchable sheet with a variable thickness: the biomedical applications. Multidiscip. Model. Mater. Struct. (2020). https://doi.org/10.1108/MMMS-11-2019-0205

    Article  Google Scholar 

  9. B.J. Gireesha, P.B.S. Kumar, B. Mahanthesh, S.A. Shehzad, A. Rauf, Nonlinear 3D flow of Casson–Carreau fluids with homogeneous-heterogeneous reactions: a comparative study. Results Phys. (2017). https://doi.org/10.10167/j.rinp.2017.07.060

    Article  Google Scholar 

  10. Z. Shah, A. Dawar, P. Kumam, W. Khan, S. Islam, Impact of nonlinear thermal radiation on MHD nanofluid thin film flow over a horizontally rotating disk. Appl. Sci. 9(8), 1533 (2019)

    Article  Google Scholar 

  11. G.R. Machireddy, S. Naramgari, Heat and mass transfer in radiative MHD Carreau fluid with cross diffusion. Ain Shams Eng. J. 9(4), 1189–1204 (2018). https://doi.org/10.1016/j.asej.2016.06.012

    Article  Google Scholar 

  12. M. Gnaneswara Reddy, M.V. Sudha Rani, O.D.G. Makinde, Effects of Nonlinear Thermal Radiation and Thermo-Diffusion on MHD Carreau fluid Flow Past a Stretching Surface with Slip. Diffusion Foundations, vol. 11 (2017). https://www.scientific.net/df.11.57

  13. D. Lu, M. Ramzan, N. ul Huda, J.D. Chung, U. Farooq, Nonlinear radiation effect on MHD Carreau nanofluid flow over a radially stretching surface with zero mass flux at the surface. Sci Rep 8, 3709 (2018). https://doi.org/10.1038/s41598-018-22000-w

    Article  ADS  Google Scholar 

  14. A. Zaib, M. Rashidi, A. Chamkha, N. Mohammad, Impact of nonlinear thermal radiation on stagnation-point flow of a Carreau nanofluid past a nonlinear stretching sheet with binary chemical reaction and activation energy. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 232(6), 962–972 (2018). https://doi.org/10.1177/0954406217695847

    Article  Google Scholar 

  15. M. Khan, Hashim, M. Hussain, M. Azam, Magnetohydrodynamic flow of Carreau fluid over a convectively heated surface in the presence of non-linear radiation. J. Magn. Magn. Mater. 412, 63–68 (2016). https://doi.org/10.1016/j.jmmm.2016.03.077

    Article  ADS  Google Scholar 

  16. E.M. Abo-Eldahab, M.A. El Aziz, Viscous dissipation and Joule heating effects on MHD-free convection from a vertical plate with power-law variation in surface temperature in the presence of Hall and ion-slip currents. Appl. Math. Model. 29(6), 579–595 (2005). https://doi.org/10.1016/j.apm.2004.10.005

    Article  MATH  Google Scholar 

  17. T. Muhammad, T. Hayat, S.A. Shehzad, A. Alsaedi, Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes. Results Phys. 8, 365–371 (2018). https://doi.org/10.1016/j.rinp.2017.12.047

    Article  ADS  Google Scholar 

  18. R.A. Shah, T. Abbas, M. Idrees et al., MHD Carreau fluid slip flow over a porous stretching sheet with viscous dissipation and variable thermal conductivity. Bound Value Probl 2017, 94 (2017). https://doi.org/10.1186/s13661-017-0827-4

    Article  MathSciNet  MATH  Google Scholar 

  19. U. Khan, N. Ahmed, S. TauseefMohyud-Din, Influence of viscous dissipation and Joule heating on MHD bio-convection flow over a porous wedge in the presence of nanoparticle and gyrotactic microorganisms. Springerplus 5(1), 2043 (2016). https://doi.org/10.1186/s40064-016-3718-8

    Article  Google Scholar 

  20. M.D. Shamshuddin, P.V. Satya Narayana, Combined effect of viscous dissipation and Joule heating on MHD flow past a Riga plate with Cattaneo–Christov heat flux. Indian J. Phys. (2019). https://doi.org/10.1007/s12648-019-01576-7

    Article  Google Scholar 

  21. K. Jaber, Effects of viscous dissipation and joule heating on MHD flow of a fluid with variable properties past a stretching vertical plate. Mater. Sci. (2014)

  22. U. Farooq, L. Dianchen, S. Munir, M. Ramzan, M. Suleman, S. Hussain, MHD flow of Maxwell fluid with nanomaterials due to an exponentially stretching surface. Sci. Rep. 9, 7312 (2019). https://doi.org/10.1038/s41598-019-43549-0

    Article  ADS  Google Scholar 

  23. M.R. Eid, K.L. Mahny, T. Muhammad, M. Sheikholeslami, Numerical treatment for Carreau nanofluid flow over a porous nonlinear stretching surface. Results Phys. 8, 1185–1193 (2018). https://doi.org/10.1016/j.rinp.2018.01.070

    Article  ADS  Google Scholar 

  24. N.S. Arifin, S.M. Zokri, A.R.M. Kasim, M.Z. Salleh, N.F. Mohammad, W.N.S.W. Yusoff, Aligned magnetic field of two-phase mixed convection flow in dusty Casson fluid over a stretching sheet with Newtonian heating. J. Phys: Conf. Ser. (2017). https://doi.org/10.1088/1742-6596/890/1/012001

    Article  Google Scholar 

  25. M. Khan, M. Humara Sardar, M. Gulzar, A.S. Alshomrani, On multiple solutions of non-Newtonian Carreau fluid flow over an inclined shrinking sheet. Results Phys. 8, 926–932 (2018). https://doi.org/10.1016/j.rinp.2018.01.021

    Article  ADS  Google Scholar 

  26. S. Dinarvand, S. Khalili, R. Hosseini, E. Damangir, I.R. Dehkordi, I. Pop, MHD flow and heat transfer over a nonlinearly stretching sheet in porous medium filled with a nanofluid. Spec. Top. Rev. Porous Media 5(1), 13–25 (2014). https://doi.org/10.1615/specialtopicsrevporousmedia.v5.i1.20

    Article  Google Scholar 

  27. M.K. Choudhary, S. Chaudhary, R. Sharma, Unsteady MHD flow and heat transfer over a stretching permeable surface with suction or injection. Procedia Eng. 127, 703–710 (2015). https://doi.org/10.1016/j.proeng.2015.11.371

    Article  Google Scholar 

  28. I.M. Alarifi, A.G. Abokhalil, M. Osman, L.A. Lund, M.B. Ayed, H. Belmabrouk, I. Tlili, MHD flow and heat transfer over vertical stretching sheet with heat sink or source effect. Symmetry 11(3), 297 (2019). https://doi.org/10.3390/sym11030297

    Article  MATH  Google Scholar 

  29. M. Megahed, Carreau fluid flow due to nonlinearly stretching sheet with thermal radiation, heat flux, and variable conductivity. Appl. Math. Mech. 40, 1615–1624 (2019). https://doi.org/10.1007/s10483-019-2534-6

    Article  MathSciNet  Google Scholar 

  30. U. Farooq, D. Lu, S. Munir, M. Ramzan, M. Suleman, S. Hussain, MHD flow of Maxwell fluid with nanomaterials due to an exponentially stretching surface. Sci Rep. 9(1), 7312 (2019). https://doi.org/10.1038/s41598-019-43549-0

    Article  ADS  Google Scholar 

  31. T. Hayat, A. Aziz, T. Muhammad, A. Alsaedi, Active and passive controls of 3D nanofluid flow by a convectively heated nonlinear stretching surface. Phys. Scr. (2019). https://doi.org/10.1088/1402-4896/ab1307

    Article  Google Scholar 

  32. M.Y. Imad Khan, A.H. Malik, M. Khan, Magnetohydrodynamics Carreau nanofluid flow over an inclined convective heated stretching cylinder with Joule heating. Results Phys. 7, 4001–4012 (2017)

    Article  ADS  Google Scholar 

  33. B. Souayeh, M. Gnaneswara Reddy, P. Sreenivasulu, T. Poornima, M. Rahimi-Gorji, I.M. Alarifi, Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle. J. Mol. Liq. 284, 163–174 (2019)

    Article  Google Scholar 

  34. M.A. Yousif, H.F. Ismael, T. Abbas, R. Ellahi, Numerical study of momentum and heat transfer of MHD Carreau nanofluid over an exponentially stretched plate with internal heat source/sink and radiation. Heat Transf. Res. 50(7), 649–658 (2019)

    Article  Google Scholar 

  35. K. Iqbal, J. Ahmed, M. Khan, L. Ahmad, M. Alghamd, Magnetohydrodynamic thin film deposition of Carreau nanofluid over an unsteady stretching surface. Appl. Phys. A 126, 105 (2020)

    Article  ADS  Google Scholar 

  36. W.A. Khan, S. Farooq, S. Kadry, M. Hanif, F.J. Iftikhar, S.Z. Abbas, Variable characteristics of viscosity and thermal conductivity in peristalsis of magneto-Carreau nanoliquid with heat transfer irreversibilities. Comput. Methods Prog. Biomed. (2020). https://doi.org/10.1016/j.cmpb.2020.105355

    Article  Google Scholar 

  37. S.U. Khan, S.A. Shehzad, Electrical MHD Carreau nanofluid over porous oscillatory stretching surface with variable thermal conductivity: applications of thermal extrusion system. Phys. A Stat. Mech. Appl. 550, 124132 (2020). https://doi.org/10.1016/j.physa.2020.124132

    Article  Google Scholar 

  38. S. Eswaramoorthi, M. Bhuvaneswari, Passive and active control on 3D convective flow of viscoelastic nanofluid with heat generation and convective heating. Front. Mech. Eng. 5, 36 (2019). https://doi.org/10.3389/fmech.2019.00036

    Article  Google Scholar 

  39. F. Tuz Zohra, M.J. Uddin, M.F. Basir, A.I.M. Ismail, Magnetohydrodynamic bio-nano-convective slip flow with Stefan blowing effects over a rotating disc. Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst. (2019). https://doi.org/10.1177/2397791419881580

    Article  Google Scholar 

  40. J. Singh, U.S. Mahabaleshwar, G. Bognár, Mass transpiration in nonlinear MHD flow due to porous stretching sheet. Sci. Rep. 9, 18484 (2019). https://doi.org/10.1038/s41598-019-52597-5

    Article  ADS  Google Scholar 

  41. S.S. Giri, K. Das, P.K. Kundu, Stefan blowing effects on MHD bioconvection flow of a nanofluid in the presence of gyrotactic microorganisms with active and passive nanoparticle flux. Eur. Phys. J. Plus 132, 101 (2017). https://doi.org/10.1140/epjp/i2017-11338-7

    Article  Google Scholar 

  42. N.A. Halim, R.U. Haq, N.F.M. Noor, Active and passive controls of nanoparticle in Maxwell stagnation point flow over a slipped stretched surface. Meccanica 52, 1527–1539 (2017). https://doi.org/10.1007/s11012-016-0517-9

    Article  MathSciNet  Google Scholar 

  43. B. Ali, Yu. Xiaojun, M.T. Sadiq, A.U. Rehman, L. Ali, A finite element simulation of the active and passive controls of the MHD effect on an axisymmetric nanofluid flow with thermo-diffusion over a radially stretched sheet. Processes 8(2), 207 (2020). https://doi.org/10.3390/pr8020207

    Article  Google Scholar 

  44. M. Khan, M. Irfan, W.A. Khan, A.S. Alshomrani, A new modeling for 3D Carreau fluidflow considering nonlinear thermal radiation. Results Phys. (2017). https://doi.org/10.1016/j.rinp.2017.07.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Poornima or Basma Souayeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreenivasulu, P., Poornima, T., Malleswari, B. et al. Viscous dissipation impact on electrical resistance heating distributed Carreau nanoliquid along stretching sheet with zero mass flux. Eur. Phys. J. Plus 135, 705 (2020). https://doi.org/10.1140/epjp/s13360-020-00680-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00680-6

Navigation