Skip to main content

Advertisement

Log in

D-bound and Bekenstein bound for McVittie solution surrounded by dark energy cosmological fields

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The cosmological candidate fields for dark energy as quintessence, phantom and cosmological constant are studied in terms of an entropic hypothesis imposed on the McVittie solution surrounded by dark energy. We certify this hypothesis as “D-bound-Bekenstein bound identification” for dilute systems and use it as a criterion to determine which candidate of dark energy can satisfy this criterion for a dilute McVittie solution. It turns out that only the cosmological constant can pass this criterion successfully while the quintessence and phantom fields fail, as non-viable dark energy fields for this particular black hole solution. Moreover, assuming this black hole to possess the saturated entropy, the entropy-area law and the holographic principle can put two constraints on the radius R of the cosmological horizon. The first one shows that the Hubble radius is discrete such that for any arbitrary value of the black hole mass \(m_{0}\), the value of R is determined up to an integer number. The latter one shows that when a black hole is immersed in a cosmological background, the radius of the cosmological horizon is constrained as \(R<\frac{1}{H}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the modern language, Eq. (4) represents the constancy of the Hawking–Hayward mass \(m_H\), i.e. \(\dot{m}_H=0\) [74]. Indeed, m(t) here stands just as a metric coefficient in a particular coordinate system. In fact, one has to identify the Hawking–Hayward mass \(m_H\) [74] as the physically relevant mass, which eventually is related to the physical size of the central object or its corresponding horizon, in order to avoid making any coordinate-dependent statements on the mass and size [50, 74] or the temperature [75] of the central object.

  2. Note that in all of the other formulas we have put \(l_{p}=1\) but for the clarification here we have inserted the \(l_{p}\) in Eq. (28).

  3. There is also an interesting method for calculation of the entropy of black hole by the method of graph theory [103].

References

  1. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  2. C.L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003)

    ADS  Google Scholar 

  3. M. Tegmark et al., Phys. Rev. D 69, 103501 (2004)

    ADS  Google Scholar 

  4. S.W. Allen et al., Mon. Not. R. Astron. Soc. 353, 457 (2004)

    ADS  Google Scholar 

  5. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    ADS  Google Scholar 

  6. P. J. Steinhardt, in Critical Problems in Physics, edited by V. L. Fitch and R. Marlow (Princeton University Press, Princeton, N. J., 1997)

  7. I. Zlatev, L.M. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999)

    ADS  Google Scholar 

  8. P.J. Steinhardt, L.M. Wang, I. Zlatev, Phys. Rev. D 59, 123504 (1999)

  9. R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998)

    ADS  Google Scholar 

  10. Y. Fujii, Phys. Rev. D 26, 2580 (1982)

    ADS  MathSciNet  Google Scholar 

  11. L.H. Ford, Phys. Rev. D 35, 2339 (1987)

    ADS  Google Scholar 

  12. C. Wetterich, Nucl. Phys. B 302, 668 (1988)

    ADS  Google Scholar 

  13. B. Ratra, P.J.E. Peebles, Phys. Rev. D 37, 3406 (1988)

    ADS  Google Scholar 

  14. S. Nojiri, S.D. Odintsov, Phys. Lett. B 562, 147 (2003)

    ADS  Google Scholar 

  15. E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 043539 (2004)

    ADS  Google Scholar 

  16. S. Nojiri, S.D. Odintsov, Phys. Lett. B 565, 1 (2003)

    ADS  Google Scholar 

  17. S.M. Carroll, M. Hoffman, M. Trodden, Phys. Rev. D 68, 023509 (2003)

    ADS  Google Scholar 

  18. P. Singh, M. Sami, N. Dadhich, Phys. Rev. D 68, 023522 (2003)

    ADS  Google Scholar 

  19. M. Sami, A. Toporensky, Mod. Phys. Lett. A 19, 1509 (2004)

    ADS  Google Scholar 

  20. I. Brevik, S. Nojiri, S.D. Odintsov, L. Vanzo, Phys. Rev. D 70, 043520 (2004)

    ADS  MathSciNet  Google Scholar 

  21. P.F. Gonzalez-Diaz, C.L. Siguenza, Nucl. Phys. B 697, 363 (2004)

    ADS  Google Scholar 

  22. D.H. Hsu, A. Jenskins, M.B. Wise, Phys. Lett. B 597, 270 (2004)

    ADS  Google Scholar 

  23. J.A.S. Lima, J.S. Alcaniz, Phys. Lett. B 600, 191 (2004)

    ADS  Google Scholar 

  24. H. Mosheni Sadjadi, Phys. Rev. D 73, 0635325 (2006)

    Google Scholar 

  25. S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 103522 (2004)

    ADS  Google Scholar 

  26. S. Nojiri, S.D. Odintsov, Phys. Lett. B 595, 1 (2004)

    ADS  Google Scholar 

  27. H. Hadi, F. Darabi, K. Atazadeh, Y. Heydarzade,. arXiv:1903.05119

  28. H. Hadi, F. Darabi, Y. Heydarzade,. arXiv:1907.07143

  29. J.M. Cline, S. Jeon, G.D. Moore, Phys. Rev. D 70, 043543 (2004)

    ADS  Google Scholar 

  30. R.R. Caldwell, E.V. Linder, Phys. Rev. Lett. 95, 141301 (2005)

    ADS  Google Scholar 

  31. I. Zlatev, L.M. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999)

    ADS  Google Scholar 

  32. P. Binetruy, Phys. Rev. D 60, 063502 (1999)

    ADS  Google Scholar 

  33. P. Brax, J. Martin, Phys. Lett. B 468, 40 (1999)

    ADS  MathSciNet  Google Scholar 

  34. A.D. Linde, Phys. Lett. B 129, 177 (1983)

    ADS  Google Scholar 

  35. A.D. Linde, Inflation and quantum cosmology, in Three Hundred Years of Gravitation, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1987), p. 604

    Google Scholar 

  36. R. Kallosh, J. Kratochvil, A. Linde, E.V. Linder, M. Shmakova, JCAP 0310, 015 (2003)

    ADS  Google Scholar 

  37. R. Gannouji, D. Polarski, A. Ranquet, A.A. Starobinsky, JCAP 0609, 016 (2006)

    ADS  Google Scholar 

  38. G.C. McVittie, Mon. Not. R. Astr. Soc. 93, 325 (1933)

    ADS  Google Scholar 

  39. V. Faraoni, Galaxies 1, 114 (2013)

    ADS  Google Scholar 

  40. B.C. Nolan, Phys. Rev. D 58, 064006 (1998)

    ADS  MathSciNet  Google Scholar 

  41. B.C. Nolan, Class. Quantum Grav. 16, 1227 (1999)

    ADS  Google Scholar 

  42. B.C. Nolan, Class. Quantum Grav. 16, 3183 (1999)

    ADS  Google Scholar 

  43. V. Faraoni, A.F. Zambrano Moreno, R. Nandra, Phys. Rev. D 85, 083526 (2012)

    ADS  Google Scholar 

  44. N. Kaloper, M. Kleban, D. Martin, Phys. Rev. D 81, 104044 (2010)

    ADS  Google Scholar 

  45. K. Lake, M. Abdelqader, Phys. Rev. D 84, 044045 (2011)

    ADS  Google Scholar 

  46. A.M. da Silva, M. Fontanini, D.C. Guariento, Phys. Rev. D 87, 064030 (2013)

    ADS  Google Scholar 

  47. B.C. Nolan, Class. Quantum Grav. 31, 235008 (2014)

    ADS  Google Scholar 

  48. B.C. Nolan, Class. Quantum Grav. 34, 225002 (2017)

    ADS  Google Scholar 

  49. V. Faraoni, A.F. Zambrano Moreno, A. Prain, Phys. Rev. D 89, 103514 (2013)

    ADS  Google Scholar 

  50. C.J. Gao, S.N. Zhang, Phys. Lett. B 595, 28 (2004)

    ADS  MathSciNet  Google Scholar 

  51. P.C. Vaidya, Y.P. Shah, Curr. Sci. 36, 120 (1966)

    Google Scholar 

  52. Y.P. Shah, P.C. Vaidya, Tensor 19, 191 (1968)

    Google Scholar 

  53. A. Davidson, S. Rubin, Y. Verbin, Phys. Rev. D 86, 104061 (2012)

    ADS  Google Scholar 

  54. M. Gurses, Y. Heydarzade, Phys. Rev. D 100, 064048 (2019)

    ADS  MathSciNet  Google Scholar 

  55. A. Krasinski, Inhomogeneous Cosmological Models (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  56. I. Antoniou, L. Perivolaropoulos, Phys. Rev. D 93, 123520 (2016)

    ADS  MathSciNet  Google Scholar 

  57. S. Nesseris, L. Perivolaropoulos, Phys. Rev. D 70, 123529 (2004)

    ADS  Google Scholar 

  58. R. Bousso, JHEP 0104, 035 (2001)

    ADS  Google Scholar 

  59. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    ADS  MathSciNet  Google Scholar 

  60. J.D. Bekenstein, Phys. Rev. D 23, 287 (1981)

    ADS  MathSciNet  Google Scholar 

  61. J.D. Bekenstein, Phys. Rev. D 30, 1669 (1984)

    ADS  MathSciNet  Google Scholar 

  62. M. Schiffer, J.D. Bekenstein, Phys. Rev. D 39, 1109 (1989)

    ADS  MathSciNet  Google Scholar 

  63. D. N. Page, arXiv:hep-th/0007237 (2000)

  64. J. D. Bekenstein, arXiv:gr-qc/0006003 (2000)

  65. R.M. Wald, Liv. Rev. Rel 4, 6 (2001)

    Google Scholar 

  66. J.D. Bekenstein, Nuovo Cim. Lett. 4, 737 (1972)

    ADS  Google Scholar 

  67. J.D. Bekenstein, Phys. Rev. D 9, 3292 (1974)

    ADS  Google Scholar 

  68. W.G. Unruh, R.M. Wald, Phys. Rev. D 25, 942 (1982)

    ADS  Google Scholar 

  69. W.G. Unruh, R.M. Wald, Phys. Rev. D 27, 2271 (1983)

    ADS  Google Scholar 

  70. M.A. Pelath, R.M. Wald, Phys. Rev. D 60, 104009 (1999)

    ADS  MathSciNet  Google Scholar 

  71. Y. Heydarzade, H. Hadi, C. Corda, F. Darabi, Phys. Lett. B 776, 457 (2018)

    ADS  MathSciNet  Google Scholar 

  72. A.C. Wall, Phys. Rev. D 85, 104049 (2012)

    ADS  Google Scholar 

  73. T. Jacobson, R. Parentani, Found. Phys. 33, 323 (2003)

    MathSciNet  Google Scholar 

  74. S.A. Hayward, Phys. Rev. D 49, 831 (1994)

    ADS  MathSciNet  Google Scholar 

  75. H. Saida, T. Harada, H. Maeda, Class. Quantum Grav. 24(18), 4711 (2007)

    ADS  Google Scholar 

  76. V. Faraoni, Cosmological and Black Hole Apparent Horizons (Springer, Switzerland, 2015)

    MATH  Google Scholar 

  77. C.M. Misner, D.H. Sharp, Phys. Rev. 136, 571 (1964)

    ADS  MathSciNet  Google Scholar 

  78. W.C. Hernandez, C.W. Misner, Astrophys. J. 143, 452 (1966)

    ADS  Google Scholar 

  79. A.M. da Silva, M. Fontanini, D.C. Guariento, Phys. Rev. D 87, 064030 (2013)

    ADS  Google Scholar 

  80. A. Maciel, D.C. Guariento, C. Molina, Phys. Rev. D 91, 084043 (2015)

    ADS  MathSciNet  Google Scholar 

  81. D.R. Brill, G.T. Horowitz, D. Kastor, J. Traschen, Phys. Rev. D 49, 840 (1994)

    ADS  MathSciNet  Google Scholar 

  82. H. Saida, T. Harada, H. Maeda, Class. Quantum Grav. 24, 4711 (2007)

    ADS  Google Scholar 

  83. D.N. Vollick, Phys. Rev. D 76, 124001 (2007)

    ADS  MathSciNet  Google Scholar 

  84. Y. Gong, A. Wang, Phys. Rev. Lett. 99, 211301 (2007)

    ADS  MathSciNet  Google Scholar 

  85. F. Briscese, E. Elizalde, Phys. Rev. D 77, 044009 (2008)

    ADS  MathSciNet  Google Scholar 

  86. M. Akbar, R.-G. Cai, Phys. Lett. B 635, 7 (2006)

    ADS  MathSciNet  Google Scholar 

  87. P. Wang, Phys. Rev. D 72, 024030 (2005)

    ADS  MathSciNet  Google Scholar 

  88. H. Mohseni-Sadjadi, Phys. Rev. D 76, 104024 (2007)

    ADS  MathSciNet  Google Scholar 

  89. R. Di Criscienzo, M. Nadalini, L. Vanzo, G. Zoccatelli, Phys. Lett. B 657, 107 (2007)

    ADS  MathSciNet  Google Scholar 

  90. V. Faraoni, Phys. Rev. D 76, 104042 (2007)

    ADS  MathSciNet  Google Scholar 

  91. M. Nadalini, L. Vanzo, S. Zerbini, Phys. Rev. D 77, 024047 (2008)

    ADS  MathSciNet  Google Scholar 

  92. S.A. Hayward, R. Di Criscienzo, L. Vanzo, M. Nadalini, S. Zerbini, Class. Quantum Grav. 26, 062001 (2009)

    ADS  Google Scholar 

  93. S.A. Hayward, R. Di Criscienzo, M. Nadalini, L. Vanzo, S. Zerbini, AIP Conf. Proc. 1122, 145 (2009)

    ADS  Google Scholar 

  94. R. Di Criscienzo, M. Nadalini, L. Vanzo, S. Zerbini, G. Zoccatelli, Phys. Lett. B 657, 107 (2007)

    ADS  MathSciNet  Google Scholar 

  95. R. Brustein, D. Gorbonos, M. Hadad, Phys. Rev. D 79, 044025 (2009)

    ADS  MathSciNet  Google Scholar 

  96. V. Faraoni, Entropy 12, 1246 (2010)

    ADS  MathSciNet  Google Scholar 

  97. V. Faraoni, A.F. Zambrano Moreno, R. Nandra, Phys. Rev. D 85(8), 083526 (2012)

    ADS  Google Scholar 

  98. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003)

    ADS  Google Scholar 

  99. S. Nojiri, S.D. Odintsov, S. Tsujikawa, Phys. Rev. D 71, 063004 (2005)

    ADS  Google Scholar 

  100. S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 103522 (2004)

    ADS  Google Scholar 

  101. I. Brevik, S. Nojiri, S.D. Odintsov, L. Vanzo, ibid 70, 043520 (2004)

    ADS  Google Scholar 

  102. S. Nojiri, S.D. Odintsov, Phys. Lett. B 595, 1 (2004)

    ADS  Google Scholar 

  103. A. Davidson, Phys. Rev. D 100, 081502(R) (2019)

    ADS  Google Scholar 

  104. J.D. Bekenstein, V.F. Mukhanov, Phys. Lett. B 360, 7 (1995)

    ADS  MathSciNet  Google Scholar 

  105. V.F. Mukhanov, JETP Lett. 44, 63 (1986)

    ADS  MathSciNet  Google Scholar 

  106. S. Hod, Phys. Rev. Lett. 81, 4293 (1998)

    ADS  MathSciNet  Google Scholar 

  107. O. Dreyer, Phys. Rev. Lett. 90, 081301 (2003)

    ADS  Google Scholar 

  108. E. Berti, V. Cardoso, A.O. Starinets, Class. Quantum Grav. 26, 163001 (2009)

    ADS  Google Scholar 

  109. M. Maggiore, Phys. Rev. Lett. 100, 141301 (2008)

    ADS  MathSciNet  Google Scholar 

  110. E.C. Vagenas, JHEP 11, 073 (2008)

    ADS  MathSciNet  Google Scholar 

  111. A.J.M. Medved, Class. Quantum Grav. 25, 205014 (2008)

    ADS  Google Scholar 

  112. A. Davidson, Int. J. Mod. Phys. D 23, 1450041 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

We appreciate the anonymous referee for the constructive comments that significantly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Darabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadi, H., Heydarzade, Y., Darabi, F. et al. D-bound and Bekenstein bound for McVittie solution surrounded by dark energy cosmological fields. Eur. Phys. J. Plus 135, 584 (2020). https://doi.org/10.1140/epjp/s13360-020-00601-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00601-7

Navigation