Skip to main content
Log in

Complex dynamics in the two spring-block model for earthquakes with fractional viscous damping

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Fractional calculus is suitable to model complex systems with memory and fractal systems. Earthquakes are both complex systems with long-memory and some of their faults have fractal properties. It is fair to claim that a fractional model is very efficient for earthquake modeling. The stability analysis is performed to determine the domain in which the system is stable or not. The model gives us an excellent interpretation of the earthquake as a stick–slip motion. The numerical simulation method used is that of Grünwald–Letnikov which is based on the generalization of the classical derivative. Nonlinear dynamical tools such as bifurcation diagrams and 0–1 tests are used to analyze the dynamics of the considered two spring-block system as an analogy of a fault with two interacting patches or asperities. Our results show that fractional-order derivative and viscosity have a significant influence on the recurrence time of an earthquake. The presence of fluid between the blocks and stickiness surface increases the recurrence of an earthquake. High viscosity leads to a slow slip or silent earthquakes. We observe that the introduction of the fractional derivative can extend or delay the transition from stick–slip (seismic) motion to an equilibrium state (aseismic fault).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. A. Bhattacharya, A.M. Rubin, Frictional response to velocity steps and 1-D fault nucleation under a state evolution law with stressing-rate dependence. J. Geophys. Res. Solid Earth. 119, 2272 (2014)

    ADS  Google Scholar 

  2. V. De Rubeis, R. Hallgass, V. Loreto, G. Paladin, L. Pietronero, P. Tosi, Self-affine asperity model for earthquakes. Phys. Rev. Lett. 76, 2599 (1996)

    ADS  Google Scholar 

  3. W.F. Brace, J.D. Byerlee, Stick-slip as a mechanism for earthquakes. Science 153, 3739 (1966)

    Google Scholar 

  4. H. Kanamori, G.S. Stewart, Seismological aspects of Guatemala earthquake of February 4, 1976. J. Geophys. Res. 83, 3427 (1978)

    ADS  Google Scholar 

  5. R. Hallgass, V. Loreto, O. Mazzella, G. Paladin, L. Pietronero, Earthquake statistics and fractal faults. Phys. Rev. E 56, 1346 (1997)

    ADS  Google Scholar 

  6. N.V. Sarlis, S.R. Christopoulos, Natural time analysis of the centennial earthquake catalog. Chaos Interdiscip. J. Nonlinear Sci. 22, 023123 (2012)

    Google Scholar 

  7. M. Liu, S. Stein, Mid-continental earthquakes: spatiotemporal occurrences, causes, and hazards. Eart. Sci. Rev. 162, 364 (2016)

    ADS  Google Scholar 

  8. S. Stein, M. Liu, E. Calais, Q. Li, Mid-continent earthquakes as a complex system. Seismol. Res. Lett. 80, 551 (2009)

    Google Scholar 

  9. S. Lennartz, V.N. Livina, A. Bunde, S. Havlin, Long-term memory in earthquakes and the distribution of inter occurrence times. Europhys. Lett. 81, 69001 (2008)

    ADS  Google Scholar 

  10. A.E.M. El-Misiery, E. Ahmed, On a fractional model for earthquakes. Appl. Math. Comput. 178, 207 (2006)

    MathSciNet  MATH  Google Scholar 

  11. A. Rocco, B.J. West, Fractional calculus and the evolution of fractal phenomena. Phys. A 265, 535 (1999)

    Google Scholar 

  12. A.A. Stanislavsky, Memory effects and macroscopic manifestation of randomness. Phys. Rev. E 61, 4752 (2000)

    ADS  Google Scholar 

  13. A. Atangana, J.F. Gómez-Aguilar, Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus. 133, 166 (2018)

    Google Scholar 

  14. A. Atangana, J.F. Gómez-Aguilar, Fractional derivatives with no-index law property: application to chaos and statistics. Chaos, Solitons Fractals 114, 516 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  15. K.A. Ervin Lenzi, V. Tateishi Angel, H. Ribeiro, The role of fractional time derivative operators on anomalous diffusion. Front. Phys. 5, 1 (2017)

    Google Scholar 

  16. I. Podlubny, Fractional-order systems and controllers’. IEEE Trans. Autom. Control 44, 208 (1999)

    MathSciNet  MATH  Google Scholar 

  17. N. Laskin, Fractional market dynamics. Physica A Stat. Mech. Appl. 287, 482 (2000)

    ADS  MathSciNet  Google Scholar 

  18. N. ÖZalp, E. Demirci, A fractional order SEIR model with vertical transmission. Math. Comput. Model. 54, 1 (2011)

    MathSciNet  MATH  Google Scholar 

  19. R. Hilfer, P. Butzer, U. Westphal, J. Douglas, W. Schneider, G. Zaslavsky, T. Nonnemacher, A. Blumen, B. West, Applications of Fractional Calculus in Physics, vol. 128 (World Scientific, Singapore, 2000)

    Google Scholar 

  20. A. Atangana, N. Bildik, The use of fractional order derivative to predict the groundwater flow. Math. Probl. Eng. 2013, 9 (2013)

    MathSciNet  MATH  Google Scholar 

  21. A.A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 (Elsevier, Amsterdam, 2006)

    MATH  Google Scholar 

  22. A. Bizzarri, Modeling repeated slip failures on faults governed by slip-weakening friction. Bull. Seism. Soc. Am. 102, 812 (2012)

    Google Scholar 

  23. C.H. Scholz, The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, Cambridge, 1990), p. 439

    Google Scholar 

  24. A. Bizzarri, Dynamic seismic ruptures on melting fault zones. J. Geophys. Res. 116, B02310 (2011)

    ADS  Google Scholar 

  25. J.-H. Wang, Thermal and pore fluid pressure history on the Chelungpu fault at a depth of 1111 meters during the 1999 Chi-Chi, Taiwan, earthquake. J. Geophys. Res. 116, B03302 (2011)

    ADS  Google Scholar 

  26. N. Brantut, J. Sulem, A. Schubnel, Effect of dehydration reactions on earthquake nucleation: stable sliding, slow transients, and unstable slip. J. Geophys. Res. 116, B05304 (2011)

    ADS  Google Scholar 

  27. M. Dragoni, A. Piombo, Dynamics of a seismogenic fault subject to variable strain rate. Nonlinear Process. Geophys. 18, 431 (2011)

    ADS  Google Scholar 

  28. M. Dragoni, S. Santini, A two-asperity fault model with wave radiation. Phys. Earth Planet. Int. 248, 83 (2015)

    ADS  Google Scholar 

  29. A. Bizzarri, M. Cocco, A thermal pressurization model for the spontaneous dynamic rupture propagation on a three dimensional fault: 1. Methodological approach. J. Geophys. Res. 111, 05303 (2006)

    ADS  Google Scholar 

  30. J.-H. Wang, Stability analysis of slip of a one body spring-block model in the presence of thermal pressurization. Ann. Geophys. 56, R03332 (2013)

    Google Scholar 

  31. R.M. Christensen, Theory of Viscoelasticity: An Introduction (Academic Press, New York, 1971)

    Google Scholar 

  32. J.C. Simo, T.J.R. Hughes, Computational Inelasticity (Springer, New York, 1998)

    MATH  Google Scholar 

  33. D.I. Jones, Handbook of Viscoelastic Vibration Damping (Wiley, New York, 2001)

    Google Scholar 

  34. A. Hanyga, J. Comput. Acoust. 11, 75 (2003)

    MathSciNet  Google Scholar 

  35. A. Namiki, T. Yamaguchi, I. Sumita, T. Suzuki, S. Ide, Earthquake model experiments in a viscoelastic fluid: a scaling of decreasing magnitudes of earthquakes with depth. J. Geophys. Res. Sol. Ea. 119, 3169 (2014)

    ADS  Google Scholar 

  36. R. Burgmann, G. Dresen, Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth. Pl. Sci. 38, 531 (2008)

    ADS  Google Scholar 

  37. A.M. Freed, R. Bürgmann, E. Calais, J. Freymueller, Stress-dependent power-law flow in the upper mantle following the 2002 Denali, Alaska, earthquake. Earth Planet. Sci. Lett. 252, 481 (2006)

    ADS  Google Scholar 

  38. G. Haberland, J.A. Hudson, The excitation and propagation of elastic waves, in Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge, Cambridge University Press, VIII, 226 (1980) S., £ 14.00 AH/C. ISBN 0‐521‐22 777‐1. ZAMM J. Appl. Math. Mech., 61, 346 (1981)

  39. J.-H. Wang, Slip of a two-degree-of-freedom spring-block model in the presence of slip weakening friction and viscosity. Ann. Geophys. 60, S0659 (2017)

    Google Scholar 

  40. J.-H. Wang, Multi-stable slip in a one-degree-of-freedom spring-slider model with thermal-pressurized friction and viscosity. Nonlinear Proc. Geophys. 24, 467 (2017)

    ADS  Google Scholar 

  41. K. Obara, Characteristics and interactions between non-volcanic tremor and related slow earthquakes in the Nankai subduction zone, southwest Japan. J. Geodyn. 52, 229 (2011)

    Google Scholar 

  42. T. Lay, C.J. Kanamori, H. Ammon, K.D. Koper, A.R. Hutko, L. Ye, H. Yue, T.M. Rushing, Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res. 117, B04311 (2012)

    ADS  Google Scholar 

  43. D.R. Shelly, G.G. Beroza, S. Ide, S. Nakamula, Low-frequency earthquakes in Shikoku, Japan and they relationship to episodic tremor and slip. Nature 442, 188 (2006)

    ADS  Google Scholar 

  44. H.K.H. Dragert, K. Wang, T.S. James, Asilent slip event on the deeper Casadia subduction interface. Science 292, 1525 (2001)

    ADS  Google Scholar 

  45. J.-H. Wang, A study of earthquake recurrence based on a one-body spring-slider model in the presence of thermal-pressurized slip-weakening friction and viscosity. Nat. Hazards Earth Syst. Sci. 18, 1969 (2018)

    ADS  Google Scholar 

  46. M. Dragoni, S. Santini, Long-term dynamics of a fault with two asperities of different strengths. Geophys. J. Int. 191, 1457 (2012)

    ADS  Google Scholar 

  47. M. Dragoni, E. Lorenzano, Stress states and moment rates of a two-asperity fault in the presence of viscoelastic relaxation. Nonlinear. Proc. Geoph. 22, 349 (2015)

    ADS  Google Scholar 

  48. E. Lorenzano, M. Dragoni, A fault model with two asperities of different areas and strengths. Math. Geosci. 50, 697 (2018)

    MathSciNet  MATH  Google Scholar 

  49. F. Keshtkar, H. Kheiri, G.H. Erjaee, Fixed points classification of nonlinear fractional differential equations as dynamical system. J. Fract. Calc. Appl. 5, 59 (2014)

    MathSciNet  Google Scholar 

  50. G.A. Gottwald, I. Melbourne, Testing for chaos in deterministic systems with noise. Physica D 212(1–2), 100–110 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  51. G.A. Gottwald, I. Melbourne, On the validity of the 0–1test For chaos”. Nonlinearity 22, 1367 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  52. M.T. Rosenstein, J.J. Collins, C.J. De Luca, A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  53. S. Devi, S. Singh, A. Sharma, Deterministic dynamics of the magnetosphere: results of the 0-1test. Nonlinear Proc. Geophys. 20, 11 (2013)

    ADS  Google Scholar 

  54. C. Kittel, W.D. Knight, M. A. Ruderman, Mechanics, in Berkeley Physics Course, vol. 1 (McGraw-Hill Book Co, New York, 1968)

  55. J.G. Spray, Viscosity determinations of some frictionally generated silicate melts: implications for fault zone rheology at high strain rates. J. Geophys. Res. 98(B5), 8068 (1993)

    ADS  Google Scholar 

  56. J.C. Savage, A.H. Lachenbruch, Consequences of viscous drag beneath a transform fault. J. Geophys. Res. 108(B1), 2025 (2003)

    ADS  Google Scholar 

  57. D.L. Turcotte, G. Schubert, Geodynamics-Applications of Continuum Physics to Geological Problems, vol. 450 (Wiley, New York, 1982)

    Google Scholar 

  58. A. Bizzarri, What can physical source models tell us about the recurrence time of earthquakes? Earth Sci. Rev. 115, 318 (2012)

    Google Scholar 

  59. G.B. Tanekou, C.F. Fogang, R. Kengne, F.B. Pelap, Lubrication pressure and fractional viscous damping effects on the spring-block model of earthquakes. Eur. Phys. J. Plus 133, 150 (2018)

    Google Scholar 

  60. J.C. Gu, J.R. Rice, A.L. Ruina, S.T. Tse, Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Phys. Solids 32, 167 (1984)

    ADS  MATH  Google Scholar 

  61. A. Bizzarri, M. Cocco, 3-D dynamic simulations of spontaneous rupture propagation governed by different constitutive laws with rake rotation allowed. Ann. Geopys. 48, 277 (2005)

    Google Scholar 

  62. J.M. Carlson, J.S. Langer, Mechanical model of an earthquake fault. Phys. Rev. A 40, 6470 (1989)

    ADS  MathSciNet  Google Scholar 

  63. M. DeSousaVieira, Chaos in a simple spring-block system. Phys. Lett. A 198, 407 (1995)

    ADS  MathSciNet  Google Scholar 

  64. M. DeSousaVieira, Chaos and synchronized chaos in an earthquake model. Phys. Rev. Lett. 82, 201 (1999)

    ADS  Google Scholar 

  65. S. Kostić, I. Franovic, K. Todorovic, N. Vasovic, Dynamics of simple earthquake model with time delay and variation of friction strength. Nonlinear Proc. Geophys. 20, 857 (2013)

    ADS  Google Scholar 

  66. M. DeSousaVieira, Self-organized criticality in a deterministic mechanical model. Phys. Rev. A 46, 6288 (1992)

    ADS  Google Scholar 

  67. R.D. Hyndman, Downdip landward limit of Cascadia great earthquake rupture. J. Geophys. Res. Sol. Ea. 118, 5530 (2013)

    ADS  Google Scholar 

  68. S. Hosseinnia, R. Ghaderi, M. Mahmoudian, S. Momani et al., Sliding mode synchronization of an uncertain fractional order chaotic system’. Comput. Math Appl. 59, 1637 (2010)

    MathSciNet  MATH  Google Scholar 

  69. I. Petras, Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation (Springer, New York, 2010)

    MATH  Google Scholar 

  70. R. Montagne, G.L. Vasconcelos, Complex dynamics in a one-block model for earthquakes. Phys. A 342, 178 (2004)

    Google Scholar 

  71. Y. Abe, N. Kato, Complex earthquake cycle simulations using a two-degree-of-freedom spring-block model with a rate- and state-friction law. Pure. appl. Geophys. 170, 745 (2013)

    ADS  Google Scholar 

  72. J.-H. Wang, A dynamic study of the frictional and viscous effects on earthquake rupture: a case study of the 1999 Chi-Chi earthquake. Taiwan. Bull. Seism. Soc. Am. 97, 1233 (2007)

    Google Scholar 

  73. D.J. Andrews, Rupture dynamics with energy loss outside the slip zone. J. Geophys ReSolid. Earth 110, B01307 (2005)

    ADS  Google Scholar 

  74. L. Rivera, H. Kanamori, Representations of the radiated energy in earthquakes. Geophys. J. Int. 162, 148 (2005)

    ADS  Google Scholar 

  75. F. Mulargia, A. Bizzarri, Anthropogenic triggering of large earthquakes. Sci. Rep. 4, 6100 (2014)

    ADS  Google Scholar 

  76. B. Erickson, B.B. Birnir, D. Lavallee, A model for aperiodicity in earthquakes. Nonlinear Proc. Geophys. 15, 1 (2008)

    ADS  Google Scholar 

  77. A. Bizzarri, P. Crupi, Linking the recurrence time of earthquakes to source parameters: a dream or a real possibility? Pure. appl. Geophys. 171, 2537 (2014)

    ADS  Google Scholar 

  78. B. Gutenberg, C.F. Richter, Magnitude and energy of earthquakes. Innali. Geofis. 9, 1 (1956)

    Google Scholar 

  79. T. Utsu, Statistical features of seismology, in International Handbook of Earthquake and Engineering Seismology, vol. Part A, ed. by W.H.K. Lee, H. Kanamori, P.C. Jennings, C. Kisslinger (Academic Press, New York, 2002), pp. 719–732

    Google Scholar 

  80. H. Kanamori, The energy release in great earthquakes. J. Geophys. Res. 82, 2981 (1977)

    ADS  Google Scholar 

  81. F.B. Pelap, L.Y. Kagho, C.F. Fogang, Chaotic behavior of earthquakes induced by a nonlinear magma up flow. Chaos Soliton Fractals 87, 71 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  82. B. Gutenberg, C.F. Richter, Seismicity of the Earth (Hafner, New York, 1965)

    Google Scholar 

  83. S. Kostić, I. Franovic, K. Todorovic, N. Vasovic, Friction memory effect in complex dynamics of earthquake model. Nonlinear Dyn. 73, 1933 (2013)

    MathSciNet  Google Scholar 

  84. M. De Sousa Vieira, G.L. Vasconcelos, S.R. Nagel, Dynamics of spring-block models: tuning to criticality. Phys. Rev. E 47, E2221 (1993)

    ADS  Google Scholar 

  85. G.L. Vasconcelos, First-order phase transition in a model for earthquakes. Phys. Rev. Lett. 76, 4865 (1996)

    ADS  Google Scholar 

  86. F.B. Pelap, G.B. Tanekou, C.F. Fogang, R. Kengne, Fractional-order stability analysis of earthquake dynamics. J. Geophys. Eng. 15, 1673 (2018)

    Google Scholar 

  87. E.G. Daub, D.R. Shelly, R.A. Guyer, P.A. Johnson, Brittle and ductile friction and the physics of tectonic tremor. Geophys. Res. Let. 38, 1 (2011)

    Google Scholar 

  88. S. Kostić, S. Franović, M. Perc, N. Vasović, K. Todorović, Triggered dynamics in a model of different fault creep regimes. Sci. Rep. 4, 1 (2014)

    Google Scholar 

  89. H. Kanamori, E. Brodsky, The physics of earthquakes. Rep. Progr. Phys. 67, 1429 (2004)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Tanekou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanekou, G.B., Fogang, C.F., Pelap, F.B. et al. Complex dynamics in the two spring-block model for earthquakes with fractional viscous damping. Eur. Phys. J. Plus 135, 545 (2020). https://doi.org/10.1140/epjp/s13360-020-00558-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00558-7

Keywords

Navigation