Skip to main content
Log in

Coherent post-Newtonian Lagrangian equations of motion

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Equations of motion for a general relativistic post-Newtonian Lagrangian formalism mainly refer to acceleration equations, i.e., differential equations of velocities. They are directly from the Euler–Lagrangian equations and usually have higher-order terms truncated when they remain at the same post-Newtonian order of the Lagrangian system. In this sense, they are incoherent Lagrangian equations of motion and approximately conserve constants of motion in this system. In fact, the Euler–Lagrangian equations can also yield the equations of motion for consistency of the Lagrangian in the general case. They are the differential equations of generalized momenta, which have no terms truncated during the derivation from this Lagrangian. The velocities are not integration variables, but they can be solved from the algebraic equations of the generalized momenta by means of an iterative method. In this way, the coherent post-Newtonian Lagrangian equations of motion are obtained. Taking weak relativistic fields in the solar system and strong relativistic fields of compact objects as examples, we numerically evaluate the accuracies of the constants of motion in the two sets of equations of motion. It is confirmed that these accuracies are much better in the coherent equations than those in the incoherent ones. The differences in the dynamics of order and chaos between the two sets of equations are also compared. Unlike the incoherent post-Newtonian Lagrangian equations of motion, the coherent ones can theoretically, strictly conserve all integrals of motion in post-Newtonian Lagrangian dynamical problems and therefore are worth recommending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.V. Wagoner, C.M. Will, Astrophys. J. 210, 764 (1976)

    Article  ADS  Google Scholar 

  2. L. Blanchet, A. Buonanno, G. Faye, Phys. Rev. D 74, 104034 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. C.K. Mishra, K.G. Arun, B.R. Iyer, Phys. Rev. D 91, 084040 (2015)

    Article  ADS  Google Scholar 

  4. T.I. Maindl, R. Dvorak, Astron. Astrophys. 290, 335 (1994)

    ADS  Google Scholar 

  5. T.R. Quinn, S. Tremaine, M. Duncan, Astron. J. 101, 2287 (1991)

    Article  ADS  Google Scholar 

  6. T. Damour, P. Jaranowski, G. Schäfer, Phys. Rev. D 63, 044021 (2001)

    Article  ADS  Google Scholar 

  7. V.C. de Andrade, L. Blanchet, G. Faye, Class. Quantum Gravit. 18, 753 (2001)

    Article  ADS  Google Scholar 

  8. M. Levi, J. Steinhoff, J. Cosmol. Astropart. Phys. 12, 003 (2014)

    Article  ADS  Google Scholar 

  9. X. Wu, L. Mei, G. Huang, S. Liu, Phys. Rev. D 91, 024042 (2015)

    Article  ADS  Google Scholar 

  10. X. Wu, G. Huang, Mon. Not. R. Astron. Soc. 452, 3617 (2015)

    ADS  Google Scholar 

  11. L. Huang, X. Wu, D. Ma, Eur. Phys. J. C 76, 488 (2016)

    Article  ADS  Google Scholar 

  12. L. Huang, L. Mei, S. Huang, Eur. Phys. J. C 78, 814 (2018)

    Article  ADS  Google Scholar 

  13. G. Huang, X. Wu, Phys. Rev. D 89, 124034 (2014)

    Article  ADS  Google Scholar 

  14. D. Li, X. Wu, E. Liang, Ann. Phys. (Berlin) 531, 1900136 (2019)

    Article  ADS  Google Scholar 

  15. C.D. Murray, S.F. Dermott, Solar System Dynamics (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  16. F.L. Dubeibe, F.D. Lora-Clavijo, G.A. Gonzalez, Astrophys. Sp. Sci. 97, 362 (2017)

    Google Scholar 

  17. X. Wu, T.Y. Huang, Phys. Lett. A 313, 77 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  18. X. Wu, T.Y. Huang, H. Zhang, Phys. Rev. D 74, 083001 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. L. Blanchet, B.R. Iyer, Class. Quantum Gravity 20, 755 (2003)

    Article  ADS  Google Scholar 

  20. L.E. Kidder, Phys. Rev. D 52, 821 (1995)

    Article  ADS  Google Scholar 

  21. X. Wu, Y. Xie, Phys. Rev. D 81, 084045 (2010)

    Article  ADS  Google Scholar 

  22. L.E. Kidder, C.M. Will, Phys. Rev. D 47, R4183 (1993)

    Article  ADS  Google Scholar 

  23. B. Mikóczi, Phys. Rev. D 95, 064023 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to a referee for valuable comments and suggestions. This research has been supported by the National Natural Science Foundation of China under Grants No. 11533004 and 11973020, the Natural Science Foundation of Guangxi under Grant No. 2019JJD110006 and the Natural Science Foundation Innovation Group of Guangxi under Grant No. 2018GXNSFGA281007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wang, Y., Deng, C. et al. Coherent post-Newtonian Lagrangian equations of motion. Eur. Phys. J. Plus 135, 390 (2020). https://doi.org/10.1140/epjp/s13360-020-00407-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00407-7

Navigation