Skip to main content
Log in

Temperature-dependent power laws in the brittle fragmentation of solid aromatic compounds

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In many fragmentation processes, the probability P of obtaining debris with size x is proportional to \(x^{-\alpha }\) where \({\alpha }\) is the so-called critical exponent. Statistical distributions of this type are called power laws, and they are regarded as a fingerprint of the self-similar, or fractal nature, of the process. In the present paper, we present experimental data on the fragmentation process, performed at different temperatures, of various aromatic compounds with similar crystal structure but different thermodynamic properties. The statistical distribution of the debris size always follows a power law distribution over three decades or more for all compounds at all temperatures. The value of the critical exponent is generally higher at lower values of the grinding temperature. Our data are discussed in connection with the thermodynamic properties of the different materials. It is pointed out that a similar behaviour is also observed in the statistical distribution of the magnetization reversals taking place in thin ferromagnetic films under the effect of an applied magnetic field. This could be an indication of the existence of a more general mechanism acting in a similar way in these different systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.K. Brown, R.R. Karpp, D.E. Grady, Astrophys. Space Sci. 94, 401 (1984)

    Article  ADS  Google Scholar 

  2. W. Bauer, S. Pratt, Phys. Rev. C 59, 2695 (1999)

    Article  ADS  Google Scholar 

  3. N. Keule et al., J. Struct. Geol. 29, 1282 (2007)

    Article  ADS  Google Scholar 

  4. E. Gudowska Nowak et al., Eur. Phys. J. 30, 317 (2009)

    Google Scholar 

  5. K. Kouroupis-Agalou et al., Nanoscale 6, 5926 (2014)

    Article  ADS  Google Scholar 

  6. T. Kadono, M. Arakawa, Phys. Rev. E 65, 035107–1 (2002)

    Article  ADS  Google Scholar 

  7. B. Venkoba Rao, A. Datta, Powder Technol. 169, 41 (2002)

    Google Scholar 

  8. Z.Y. Xia et al., Adv. Funct. Mater. 23, 4684 (2013)

    Article  Google Scholar 

  9. T. Napier-Munn, Miner. Eng. 73, 1 (2015)

    Article  Google Scholar 

  10. S. Levy, Ph.D. Thesis N. 4898, cole Polytechnique de Lausanne (2000)

  11. P. Rosin, E. Rammler, J. Inst. Fuel 7, 29 (1933)

    Google Scholar 

  12. N.F. Mott, E.H. Linfoot, United Kingdom Ministry of Supply AC3348 (1943)

  13. E.V. Schuhmann, AIME Tech. Publ. 1189, 1 (1941)

    Google Scholar 

  14. D.L. Turcotte, J. Geophys. Res. 91, 1921 (1986)

    Article  ADS  Google Scholar 

  15. A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51, 661 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  16. M.P.H. Stumpf, M.A. Porter, Science 335, 665 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  17. E. Puppin, Phys. Rev. Lett. 84, 5415 (2000)

    Article  ADS  Google Scholar 

  18. E. Puppin, M. Zani, J. Phys. Conds. Matter 16, 1183 (2004)

    Article  ADS  Google Scholar 

  19. K. Kojima, A. Uedono, Defect Control in Semiconductors (Science Directi, 1990) (1673)

  20. R. Ragu, A.S. Emarance, S.J. Das, IRJET 4, 393 (2017)

    Google Scholar 

  21. Source NIST Chemistry WebBook, SRD 69

  22. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 52, 1033 (1984)

    Article  MathSciNet  Google Scholar 

  23. M. Davydova, S. Uvarov, Frattura ed Integrit Strutturale 24, 60 (2013)

    Article  Google Scholar 

  24. H. Barkhausen, Z. Phys. 20, 401 (1919)

    Google Scholar 

  25. S. Zapperi, A. Vespignani, H.E. Stanley, Nature 388, 658 (1997)

    Article  ADS  Google Scholar 

  26. S. Zapperi, P. Cizeau, G. Durin, Phys. Rev. B 58, 6353 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is indebted with Marco Moretti and Silvia Maria Pietralunga for reading the draft of this paper and for their stimulating comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezio Puppin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puppin, E. Temperature-dependent power laws in the brittle fragmentation of solid aromatic compounds. Eur. Phys. J. Plus 135, 420 (2020). https://doi.org/10.1140/epjp/s13360-020-00398-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00398-5

Navigation