Skip to main content
Log in

Investigation of the cosmic ray angular distribution and the East–West effect near the top of Etna volcano with the MEV telescope

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

An experimental investigation of cosmic muons has been carried out with the Muography of Etna Volcano (MEV) tracking telescope, installed at an altitude of about 3100 m a.s.l. in front of the North-East Etna crater. The analysis of a statistically significant data sample (\(\sim 10^7\) events), taken during a period of approximately 2 months, has been carried out to investigate the angular distribution of cosmic muons originating both from the open sky side and from a large solid rock thickness (Etna side). Due to the geographical orientation of the MEV telescope, anisotropies caused by the East–West effect could also be observed, extracting the asymmetry factor in small steps of the zenithal angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.K.F. Grieder, Cosmic Rays at Earth (Elsevier Science, Amsterdam, 2001). (For a comprehensive review of experimental results)

    Google Scholar 

  2. Y.L. Blokh et al., N. Cimento 37B, 198 (1977)

    Article  ADS  Google Scholar 

  3. O.C. Allkofer et al., in Proceedings of the 15th International Cosmic Ray Conference, Plovdiv (Bulgaria), August 13–26, 1977, vol. 9, p. 62 (1977)

  4. O.C. Allkofer et al., in Proceedings of the 15th International Cosmic Ray Conference, Plovdiv (Bulgaria), August 13–26,1977, vol. 6, p. 38 (1977)

  5. T. Kitamura et al., in Proceedings of the 14th International Cosmic Ray Conference, Munich (Germany), August 15–29, 1975, vol. 6, p. 2031 (1975)

  6. O.C. Allkofer, J. Trumper, Zeit. fur Naturforschung 19A, 1304 (1964)

    Article  ADS  Google Scholar 

  7. T.L. Asatiani et al., in Proceedings of the 14th International Cosmic Ray Conference, Munich (Germany), August 15–29, 1975, vol. 6, p. 2024 (1975)

  8. T.L. Asatiani et al., in Proceedings of the 18th International Cosmic Ray Conference, Bangalore (India), August 22–September 3, 1983, vol. 7, p. 47 (1983)

  9. O.C. Allkofer, E. Kraft, Nuovo Cimento 39, 1051 (1965)

    Article  Google Scholar 

  10. D. Lo Presti et al., Nucl. Instrum. Methods Phys. Res. A904, 195 (2018)

    Article  ADS  Google Scholar 

  11. D. Bonanno et al., EPJ Plus 134, 281 (2019)

    Google Scholar 

  12. G. Gallo et al., Nucl. Instrum. Methods Phys. Res. A A958, 162052 (2019). https://doi.org/10.1016/j.nima.2019.04.006. (In press)

    Article  Google Scholar 

  13. K.I. Greisen, Phys. Rev. 61, 212 (1942)

    Article  ADS  Google Scholar 

  14. W.R. Sheldon, N.M. Duller, Nuovo Cimento 23, 63 (1963)

    Article  Google Scholar 

  15. R.J.R. Judge, W.F. Nash, Nuovo Cimento 35, 999 (1965)

    Article  Google Scholar 

  16. J.N. Crookes, B.C. Rastin, Nucl. Phys. B 39, 493 (1972)

    Article  ADS  Google Scholar 

  17. N. Karmakar et al., Nuovo Cimento B17, 173 (1973)

    Article  ADS  Google Scholar 

  18. D.P. Bhattacharyya, Nuovo Cimento B24, 78 (1974)

    Article  ADS  Google Scholar 

  19. P.N. Bhat, P.V. Murthy, J. Phys. G Nucl. Phys. 4, 453 (1978)

    Article  ADS  Google Scholar 

  20. M. Bahmanabadi et al., Astropart. Phys. 24, 183 (2005)

    Article  ADS  Google Scholar 

  21. A.N. Dmietreva et al., Phys. At. Nucl. 69, 865 (2006)

    Article  Google Scholar 

  22. S. Pal et al., J. Cosmol. Astropart. Phys. 1207, 033 (2012)

    Article  ADS  Google Scholar 

  23. S. Abdollahi et al., J. Phys. G Nucl. Part. Phys. 40, 025202 (2013)

    Article  ADS  Google Scholar 

  24. S. Pethuraj et al., J. Cosmol. Astropart. Phys. 9, 021 (2017)

    Article  ADS  Google Scholar 

  25. M. Bahmanabadi, Nucl. Instrum. Methods Phys. Res. A916, 1 (2019)

    Article  ADS  Google Scholar 

  26. F. Arneodo et al., Nucl. Instrum. Methods Phys. Res. A936, 242 (2019)

    Article  ADS  Google Scholar 

  27. D. Lo Presti et al., Sensors 19, 1183 (2019)

    Article  Google Scholar 

  28. K. Beuermann et al., Astron. Astrophys. 352, L26 (1999)

    ADS  Google Scholar 

  29. N. Lesparre et al., Geophys. J. Int. 183, 1348 (2010)

    Article  ADS  Google Scholar 

  30. M. Abbrescia et al., Nucl. Instrum. Methods Phys. Res. A816, 142 (2016)

    Article  ADS  Google Scholar 

  31. F. Riggi et al., Eur. J. Phys. 37, 045702 (2016)

    Article  Google Scholar 

  32. T.H. Johnson, C.J. Street, Phys. Rev. 43, 381 (1933)

    Google Scholar 

  33. T.H. Johnson, Phys. Rev. 43, 834 (1933)

    Article  ADS  Google Scholar 

  34. T.H. Johnson, Phys. Rev. 45, 569 (1934)

    Article  ADS  Google Scholar 

  35. T.H. Johnson, Phys. Rev. 48, 287 (1935)

    Article  ADS  Google Scholar 

  36. W.C. Barber, Phys. Rev. 75, 590 (1949)

    Article  ADS  Google Scholar 

  37. F. Blanco et al., Phys. Educ. 43, 536 (2008)

    Article  ADS  Google Scholar 

  38. D.S.R. Murty, Proc. Indian Acad. Sci. 37, 317 (1953)

    Article  Google Scholar 

  39. S. Pethuraj et al. (2019). arXiv:1905.00739v1 [hep-ex]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Riggi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riggi, F., Bonanno, D., Gallo, G. et al. Investigation of the cosmic ray angular distribution and the East–West effect near the top of Etna volcano with the MEV telescope. Eur. Phys. J. Plus 135, 280 (2020). https://doi.org/10.1140/epjp/s13360-020-00287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00287-x

Navigation