Skip to main content
Log in

Comparing Leggett–Garg inequality for work moments with Leggett–Garg inequality and NSIT

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we investigate non-violations of the work Leggett–Garg (WLG) inequality, the Leggett–Garg (LG) inequality and the no-signaling-in-time (NSIT) condition in a two-level system. We consider two kinds of initial states: the thermal state and the state with coherence. We find that the non-violation condition of WLG inequality for the first work moment is similar to the NSIT conditions. The WLG inequality of the first work moment cannot be violated in the high temperature limit or for a specific driving intensity for the initial thermal state, while for the initial state with coherence, the non-violation of it strongly depends on the relative phase in the quantum coherence. For the initial thermal state and state with coherence, the NSIT conditions cannot be violated for a specific driving intensity when the projective measurement operators at different measurement times are the same, while when the projective measurement operators at different measurement times are different, we cannot find any circumstance to simultaneously make all the NSIT conditions non-violated. We find that Gaussian measurements have no effect on the non-violation conditions of the WLG inequality for the first work moment and the NSIT conditions. We also find that the non-violation condition of WLG inequality for the second work moment is similar to the LG inequality. The non-violation condition of the WLG inequality for the second work moment is the same as the LG inequality under projective measurements, while it cannot be violated for a wider parameter regime than the LG inequality under Gaussian measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Leggett, A. Garg, Phys. Rev. Lett. 54, 857 (1985)

    Google Scholar 

  2. J.S. Bell, Physics 1, 195–200 (1964)

    Google Scholar 

  3. A.J. Leggett, J. Phys. Condens. Matter 14, R415 (2002)

    Google Scholar 

  4. A.J. Leggett, Rep. Prog. Phys. 71, 022001 (2008)

    Google Scholar 

  5. J. Kofler, C̆. Brukner, Phys. Rev. A 87, 052115 (2013)

    Google Scholar 

  6. L. Clemente, J. Kofler, Phys. Rev. A 91, 062103 (2015)

    Google Scholar 

  7. L. Clemente, J. Kofler, Phys. Rev. Lett. 116, 150401 (2016)

    Google Scholar 

  8. C.M. Li, N. Lambert, Y.N. Chen, G.Y. Chen, F. Nori, Sci. Rep. 2, 885 (2012)

    Google Scholar 

  9. R. Blattmann, K. Mølmer, Phys. Rev. A 96, 012115 (2017)

    Google Scholar 

  10. J. Kurchan, arXiv:cond-mat/0007360 (2000)

  11. H. Tasaki, arXiv:cond-mat/0009244 (2000)

  12. S. Mukamel, Phys. Rev. Lett. 90, 170604 (2003)

    Google Scholar 

  13. P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007)

    Google Scholar 

  14. M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665–1702 (2009)

    Google Scholar 

  15. C. Jarzynski, H.T. Quan, S. Rahav, Phys. Rev. X 5, 031038 (2015)

    Google Scholar 

  16. M. Campisi, P. Hanggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011)

    Google Scholar 

  17. H.J.D. Miller, J. Anders, Entropy 20, 200 (2018)

    Google Scholar 

  18. E. Bäumer, M. Lostaglio, M. Perarnau-Llobet, R. Sampaio, arXiv:1805.10096 (2018)

  19. M. Campisi, P. Talkner, P. H\(\ddot{a}\)nggi, Phys. Rev. Lett. 102, 210401 (2009)

  20. L. Zhu, Z. Gong, B. Wu, H.T. Quan, Phys. Rev. E 93, 062108 (2016)

    Google Scholar 

  21. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Google Scholar 

  22. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridg University Press, Cambridge, 2010)

    Google Scholar 

  23. M. Lostaglio, K. Korzekwa, D. Jennings, T. Rudolph, Phys. Rev. X 5, 021001 (2015)

    Google Scholar 

  24. M. Lostaglio, D. Jennings, T. Rudolph, Nat. Commun. 6, 6383 (2015)

    Google Scholar 

  25. P. Kammerlander, J. Anders, Sci. Rep. 6, 22174 (2016)

    Google Scholar 

  26. M.T. Mitchison, M.P. Woods, J. Prior, M. Huber, New J. Phys. 17, 115013 (2015)

    Google Scholar 

  27. J. Åberg, Phys. Rev. Lett. 113, 150402 (2014)

    Google Scholar 

  28. F.C. Binder, S. Vinjanampathy, K. Modi, J. Goold, New J. Phys. 17, 075015 (2015)

    Google Scholar 

  29. K. Korzekwa, M. Lostaglio, J. Oppenheim, D. Jennings, New J. Phys. 18, 023045 (2016)

    Google Scholar 

  30. V. Narasimhachar, G. Gour, Nat. Commun. 6, 7689 (2015)

    Google Scholar 

  31. A. Streltsov, G. Adesso, M.B. Plenio, Rev. Mod. Phys. 89, 041003 (2017)

    Google Scholar 

  32. J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A: Math. Theor. 49, 143001 (2016)

    Google Scholar 

  33. G. Chiribella, Y. Yang, Phys. Rev. A 96, 022327 (2017)

    Google Scholar 

  34. N.Y. Halpern, J.M. Renes, Phys. Rev. E 93, 022126 (2016)

    Google Scholar 

  35. J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014)

    Google Scholar 

  36. L.A. Correa, J.P. Palao, D. Alonso, G. Adesso, Sci. Rep. 4, 3949 (2014)

    Google Scholar 

  37. R. Alicki, D. Gelbwaser-Klimovsky, New J. Phys. 17, 115012 (2015)

    Google Scholar 

  38. J.B. Brask, N. Brunner, Phys. Rev. E 92, 062101 (2015)

    Google Scholar 

  39. R. Uzdin, A. Levy, R. Kosloff, arXiv:1502.06592 (2015)

  40. P.P. Hofer, M. Perarnau-Llobet, J.B. Brask, R. Silva, M. Huber, N. Brunner, Phys. Rev. B 94, 235420 (2016)

    Google Scholar 

  41. S. Nimmrichter, J. Dai, A. Roulet, V. Scarani, Quantum 1, 37 (2017)

    Google Scholar 

  42. K. Brandner, M. Bauer, U. Seifert, Phys. Rev. Lett. 119, 170602 (2017)

    Google Scholar 

  43. J. Klatzow, C. Weinzetl, P.M. Ledingham, J. N. Becker, D.J. Saunders, J. Nunn, I.A. Walmsley, R. Uzdin, E. Poem, arXiv:1710.08716 (2017)

  44. S. Rahav, U. Harbola, S. Mukamel, Phys. Rev. A 86, 043843 (2012)

    Google Scholar 

  45. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003)

    Google Scholar 

  46. M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kim, A. Svidzinsky, Proc. Natl. Acad. Sci. USA 108, 15097 (2011)

    Google Scholar 

  47. P. Skrzypczyk, A.J. Short, S. Popescu, arXiv:1302.2811 (2013)

  48. M. Horodecki, J. Oppenheim, Nat. Commun. 4, 2059 (2013)

    Google Scholar 

  49. W. Niedenzu, D. Gelbwaser-Klimovsky, G. Kurizki, Phys. Rev. E 92, 042123 (2015)

    Google Scholar 

  50. D. Gelbwaser-Klimovsky, G. Kurizki, Sci. Rep. 5, 7809 (2015)

    Google Scholar 

  51. A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, EPL 67, 565 (2004)

    Google Scholar 

  52. H. Li, J. Zou, W.L. Yu, B.M. Xu, J.G. Li, B. Shao, Phys. Rev. E 89, 052132 (2014)

    Google Scholar 

  53. A. Misra, U. Singh, S. Bhattacharya, A.K. Pati, Phys. Rev. A 93, 052335 (2016)

    Google Scholar 

  54. N. Lörch, C. Bruder, N. Brunner, P.P. Hofer, Quantum Sci. Technol. 3, 035014 (2018)

    Google Scholar 

  55. L.P. García-Pintos, J. Dressel, Phys. Rev. A 96, 062110 (2017)

    Google Scholar 

  56. C. Emary, N. Lambert, F. Nori, Rep. Prog. Phys. 77, 016001 (2014)

    Google Scholar 

  57. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  58. B.M. Xu, J. Zou, L.S. Guo, X.M. Kong, Phys. Rev. A 97, 052122 (2018)

    Google Scholar 

  59. G. Watanabe, B.P. Venkatesh, P. Talkner, Phys. Rev. E 89, 052116 (2014)

    Google Scholar 

  60. A.J. Roncaglia, F. Cerisola, J.P. Paz, Phys. Rev. Lett. 113, 250601 (2014)

    Google Scholar 

  61. G.D. Chiara, A.J. Roncaglia, J.P. Paz, New J. Phys. 17, 035004 (2015)

    Google Scholar 

  62. P. Talkner, P. Hänggi, Phys. Rev. E 93, 022131 (2016)

    Google Scholar 

  63. T. Chanda, T. Das, S. Mal, A.Sen De, U. Sen, Phys. Rev. A 98, 022138 (2018)

    Google Scholar 

  64. O. J. E. Maroney, C. G. Timpson, arXiv:1412.6139 (2014)

  65. R. Uola, G. Vitagliano, C. Budroni, arXiv:1812.02346 (2018)

Download references

Funding

The funding was provided by the National Natural Science Foundation of China (Grant Nos. 11775019 and 11875086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zou, J. & Shao, B. Comparing Leggett–Garg inequality for work moments with Leggett–Garg inequality and NSIT. Eur. Phys. J. Plus 135, 154 (2020). https://doi.org/10.1140/epjp/s13360-020-00194-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00194-1

Navigation