Skip to main content
Log in

Experimental studies of clustering in light nuclei: 11,12,13,16C

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Different, complementary, techniques are used to experimentally probe clustering aspects in several carbon isotopes: \(^{11,12,13,16}\)C. Our approaches involve breakup reactions with radioactive cocktail beams (\(^{16}\)C), compound nucleus reactions and resonant scattering at low energies (\(^{11,13}\)C), and direct reactions with the detection of in-flight resonance decay fragments (\(^{12}\)C). In this paper, we discuss results of our experimental campaign: in \(^{11}\)C, we unveil the existence of a new excited state, characterized by clustering nature, at an excitation energy of 9.36 MeV (\(5/2^-\)); the decay path of the Hoyle state in \(^{12}\)C (7.654 MeV, \(0^+\)) is investigated with unprecedented precision; we refine the spectroscopy of \(^{13}\)C above the \(\alpha \)-threshold supporting the possible appearance of the \(K^\pi ={3/2}^\pm \) molecular bands, based on the \(\alpha + ^{9}\)Be structure, previously discussed in the literature; in \(^{16}\)C, we find evidence for \(^{6}\)He–\(^{10}\)Be decays. Our findings have an impact on the understanding of clustering phenomena in light nuclear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.A. Wheeler, Phys. Rev. 52, 1107 (1937)

    Google Scholar 

  2. L.R. Hafstad, E. Teller, Phys. Rev. 54, 681 (1938)

    Google Scholar 

  3. W. von Oertzen, Z. Phys. A 354, 37 (1996)

    Google Scholar 

  4. N. Itagaki, S. Okabe, K. Ikeda, Phys. Rev. C 62, 034301 (2000)

    Google Scholar 

  5. Y. Kanada-En’yo, H. Horiuchi, Phys. Rev. C 68, 104319 (2003)

    Google Scholar 

  6. N. Itagaki, S. Okabe, K. Ikeda, I. Tanihata, Phys. Rev. C 64, 014301 (2001)

    Google Scholar 

  7. N. Itagaki, S. Okabe, Phys. Rev. C 61, 044306 (2000)

    Google Scholar 

  8. M. Seya, M. Kohno, S. Nagata, Prog. Theor. Phys. 65, 206 (1981)

    Google Scholar 

  9. M. Freer, Rep. Prog. Phys. 70, 2149 (2007)

    Google Scholar 

  10. Y. Kanada-En’yo, H. Horiuchi, A. Doté, J. Phys. G Nucl. Part. Phys. 24, 1499 (1998)

    Google Scholar 

  11. M. Freer et al., Phys. Rev. Lett. 96, 042501 (2006)

    Google Scholar 

  12. Z.H. Yang et al., Phys. Rev. C 91, 024304 (2015)

    Google Scholar 

  13. D. Suzuki et al., Phys. Rev. C 87, 054301 (2013)

    Google Scholar 

  14. W. von Oertzen, Z. Phys. A 357, 355 (1997)

    Google Scholar 

  15. M. Freer, Phys. Rev. C 84, 034317 (2011)

    Google Scholar 

  16. M. Freer et al., Rev. Mod. Phys. 90, 035004 (2018)

    Google Scholar 

  17. N. Soić et al., Phys. Rev. C 68, 014321 (2003)

    Google Scholar 

  18. M. Milin et al., Nucl. Phys. A 730, 285 (2004)

    Google Scholar 

  19. M. Milin, W. von Oertzen, Eur. Phys. J. A 14, 295 (2002)

    Google Scholar 

  20. T. Suhara, Y. Kanada-En’yo, Phys. Rev. C 84, 024328 (2011)

    Google Scholar 

  21. T. Suhara, Y. Kanada-En’yo, Phys. Rev. C 82, 044301 (2010)

    Google Scholar 

  22. W. von Oertzen et al., Eur. Phys. J. A 21, 193 (2004)

    Google Scholar 

  23. K. Ikeda et al., Prog. Theor. Phys. Suppl. E 68, 464 (1968)

    Google Scholar 

  24. H. Morinaga, Phys. Rev. 101, 254 (1956)

    Google Scholar 

  25. M. Itoh et al., Phys. Rev. C 84, 054308 (2011)

    Google Scholar 

  26. M. Freer, Phys. Rev. C 86, 034320 (2012)

    Google Scholar 

  27. S. Ishikawa, Phys. Rev. C 90, 061604(R) (2014)

    Google Scholar 

  28. E. Epelbaum et al., Phys. Rev. Lett. 109, 252501 (2012)

    Google Scholar 

  29. M. Freer, Prog. Part. Nucl. Phys. 78, 1 (2014)

    Google Scholar 

  30. T. Yoshida, N. Itagaki, T. Otsuka, Phys. Rev. C 79, 034308 (2009)

    Google Scholar 

  31. N. Furutachi, M. Kimura, Phys. Rev. C 83, 021303 (2011)

    Google Scholar 

  32. Y. Chiba, M. Kimura, J. Phys. Conf. Ser. 569, 012047 (2014)

    Google Scholar 

  33. T. Yamada, Y. Funaki, Phys. Rev. 92, 034326 (2015)

    Google Scholar 

  34. M. Freer, Phys. Rev. C 85, 014304 (2012)

    Google Scholar 

  35. F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991)

    Google Scholar 

  36. T. Baba, Y. Chiba, M. Kimura, Phys. Rev. 90, 064319 (2004)

    Google Scholar 

  37. D.R. Tilley et al., Nucl. Phys. A 564, 1 (1993)

    Google Scholar 

  38. P.J. Leask et al., J. Phys. G Nucl. Part. Phys. 27, B9 (2001)

    Google Scholar 

  39. N.I. Ashwood et al., Phys. Rev. C 70, 064607 (2004)

    Google Scholar 

  40. N. Soić et al., Nucl. Phys. A 742, 271 (2004)

    Google Scholar 

  41. Y. Kanada-En’yo, Phys. Rev. C 75, 024302 (2007)

    Google Scholar 

  42. T. Kawabata et al., Phys. Rev. C 70, 034318 (2004)

    Google Scholar 

  43. T. Kawabata et al., Phys. Lett. B 646, 6 (2007)

    Google Scholar 

  44. H. Yamaguchi et al., Phys. Rev. C 87, 034303 (2013)

    Google Scholar 

  45. M. Wiescher et al., Phys. Rev. C 28, 1431 (1983)

    Google Scholar 

  46. C. Spitaleri et al., Phys. Rev. C 95, 035801 (2017)

    Google Scholar 

  47. A.M. Boesgard et al., Astrophys. J. 621, 991 (2005)

    Google Scholar 

  48. R.J. Peterson et al., Ann. Nucl. Energy 2, 503 (1975)

    Google Scholar 

  49. M.C. Spraker et al., J. Fusion Energy 231, 357 (2012)

    Google Scholar 

  50. I. Lombardo et al., J. Phys. G Nucl. Part. Phys. 43, 045109 (2016)

    Google Scholar 

  51. J.W. Cronin et al., Phys. Rev. 101, 298 (1956)

    Google Scholar 

  52. G. Baur et al., Nucl. Phys. A 458, 188 (1986)

    Google Scholar 

  53. C. Spitaleri et al., Phys. Rev. C 60, 055802 (1999)

    Google Scholar 

  54. M. La Cognata et al., Astrophys. J. 805, 128 (2015)

    Google Scholar 

  55. J.G. Jenkin et al., Nucl. Phys. A 50, 516 (1964)

    Google Scholar 

  56. A. Kafkarkou et al., Nucl. Instrum. Meth. Phys. Res. B 316, 48 (2013)

    Google Scholar 

  57. N.A. Roughton et al., At. Data Nucl. Data Tables 23, 177 (1979)

    Google Scholar 

  58. A.B. Brown et al., Phys. Rev. 82, 159 (1951)

    Google Scholar 

  59. L. Campajola et al., Nucl. Instrum. Meth. Phys. Res. B 29, 129 (1987)

    Google Scholar 

  60. I. Lombardo et al., J. Phys. G Nucl. Part. Phys. 40, 1251102 (2013)

    Google Scholar 

  61. I. Lombardo et al., J. Phys. Conf. Ser. 569, 012068 (2014)

    Google Scholar 

  62. I. Lombardo et al., Bull. Russ. Acad. Sci. Phys. 78, 1093 (2014)

    Google Scholar 

  63. M. Chiari, L. Giuntini, P.A. Mandó, N. Taccetti, Nucl. Instr. Meth. Phys. Res. B 309, 184 (2001)

    Google Scholar 

  64. M. Chiari, L. Giuntini, P.A. Mandó, N. Taccetti, Nucl. Instr. Meth. Phys. Res. B 343, 70 (2015)

    Google Scholar 

  65. J.-J. He et al., Chin. Phys. C 42, 015001 (2018)

    Google Scholar 

  66. J.C. Overley, W. Whaling, Phys. Rev. 128, 315 (1962)

    Google Scholar 

  67. R.E. Azuma et al., Phys. Rev. C 81, 045805 (2010)

    Google Scholar 

  68. R.J. De Boer et al., Phys. Rev. C 91, 045804 (2015)

    Google Scholar 

  69. J.H. Kelley et al., Nucl. Phys. A 880, 88 (2012)

    Google Scholar 

  70. C. Spitaleri et al., Phys. Rev. C 90, 035801 (2014)

    Google Scholar 

  71. O.S. Kirsebom et al., Phys. Rev. Lett. 108, 202501 (2012)

    Google Scholar 

  72. M. Freer, Phys. Rev. C 49, R1751 (1994)

    Google Scholar 

  73. Ad R. Raduta et al., Phys. Lett. B 705, 65 (2011)

    Google Scholar 

  74. J. Manfredi et al., Phys. Rev. C 85, 037603 (2012)

    Google Scholar 

  75. T.K. Rana et al., Phys. Rev. C 88, 021601(R) (2013)

    Google Scholar 

  76. M. Itoh et al., Phys. Rev. Lett. 113, 102501 (2014)

    Google Scholar 

  77. D. Dell’Aquila et al., J. Phys. Conf. Ser. 876, 012006 (2017)

    Google Scholar 

  78. D. Dell’Aquila et al., EPJ Web Conf. 165, 01020 (2017)

    Google Scholar 

  79. D. Dell’Aquila et al., EPJ Web Conf. 184, 01005 (2018)

    Google Scholar 

  80. D. Dell’Aquila et al., Nucl. Instr. Meth. Phys. Res. A 877, 227 (2018)

    Google Scholar 

  81. W. Koenig et al., Il Nuovo Cim. 39, 9 (1977)

    Google Scholar 

  82. D. Dell’Aquila et al., AIP Conf. Proc. 2038, 020015 (2018)

    Google Scholar 

  83. D. Dell’Aquila, Clustering in light nuclear systems: a multi-method approach. PhD thesis, Università degli Studi di Napoli “Federico II” and Univeristé Paris-Sud (Paris-Saclay) (2018)

  84. D. Dell’Aquila et al., Phys. Rev. Lett. 119, 132501 (2017)

    Google Scholar 

  85. G.J. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998)

    Google Scholar 

  86. R.J. Barlow, Statistics (Wiley, Chichester, 1989)

    Google Scholar 

  87. R.B. Taylor, N.R. Fletcher, R.H. Davis, Nucl. Phys. 65, 318 (1965)

    Google Scholar 

  88. J.D. Goss et al., Phys. Rev. C 7, 1837 (1973)

    Google Scholar 

  89. Z.A. Saleh et al., Ann. der Phys. 7, 76 (1974)

    Google Scholar 

  90. J. Leavitt et al., Nucl. Instrum. Meth. Phys. Res. B 85, 37 (1994)

    Google Scholar 

  91. J. Liu, Z. Zheng, W.K. Chu, Nucl. Instrum. Meth. Phys. Res. B 108, 247 (1996)

    Google Scholar 

  92. M. Zadro et al., Nucl. Instrum. Meth. Phys. Res. B 259, 836 (2007)

    Google Scholar 

  93. A.W. Obst, T.B. Grandy, J.L. Weil, Phys. Rev. C 5, 738 (1972)

    Google Scholar 

  94. D.C. De Martini, C.R. Soltesz, T.R. Donoghue, Phys. Rev. C 7, 1824 (1973)

    Google Scholar 

  95. D.E. Groce, B.D. Sowerby, Nature 206, 494 (1965)

    Google Scholar 

  96. H.D. Knox, R.O. Lane, Nucl. Phys. A 378, 503 (1982)

    Google Scholar 

  97. W. Tornow, J. Phys. G Nucl. Phys. 9, 1507 (1983)

    Google Scholar 

  98. H.E. Hall, T.W. Bonner, Nucl. Phys. 14, 295 (1959)

    Google Scholar 

  99. C. Wheldon et al., Phys. Rev. C 86, 044328 (2012)

    Google Scholar 

  100. X. Aslanoglou et al., Phys. Rev. C 40, 73 (1989)

    Google Scholar 

  101. T. Kawabata et al., J. Phys. Conf. Ser. 111, 012013 (2008)

    Google Scholar 

  102. John M. Blatt, Victor F Weisskopf, Theoretical Nuclear Physics, 1st edn. (Wiley, New York, 1962)

    Google Scholar 

  103. I. Lombardo et al., Nucl. Instr. Meth. Phys. Res. B 302, 19 (2013)

    Google Scholar 

  104. I. Lombardo et al., Phys. Rev. C 97, 034320 (2018)

    Google Scholar 

  105. R. Kunz et al., Phys. Rev. C 53, 2486 (1996)

    Google Scholar 

  106. L. van der Zwan, K.W. Geiger, Nucl. Phys. A 152, 481 (1970)

    Google Scholar 

  107. M. Freer et al., Phys. Rev. C 63, 034301 (2001)

    Google Scholar 

  108. D. Dell’Aquila et al., CERN-Proceedings 001, 209 (2015)

    Google Scholar 

  109. D. Dell’Aquila et al., EPJ Web Conf. 117, 06011 (2016)

    Google Scholar 

  110. I. Lombardo et al., Nuc. Phys. Proc. Suppl. 215, 272 (2011)

    Google Scholar 

  111. E. De Filippo, A. Pagano, EPJ A 50, 32 (2014)

    Google Scholar 

  112. A. Pagano, Nucl. Phys. News 22, 25 (2012)

    Google Scholar 

  113. I. Lombardo et al., Nucl. Phys. A 834, 458c (2010)

    Google Scholar 

  114. E. De Filippo et al., Acta Phys. Pol. B 40, 1199 (2009)

    Google Scholar 

  115. L. Acosta et al., Nucl. Instr. Meth. Phys. Res. A 715, 56 (2013)

    Google Scholar 

  116. D. Horn et al., Nucl. Instr. Meth. Phys. Res. A 320, 273 (1992)

    Google Scholar 

  117. D. Dell’Aquila et al., Nucl. Instr. Meth. Phys. Res. A 929, 162 (2019)

    Google Scholar 

  118. M. Pârlog et al., Nucl. Instr. Meth. Phys. Res. A 482, 674 (2002)

    Google Scholar 

  119. J. van Driel, Phys. Lett. B 98, 351 (1981)

    Google Scholar 

  120. D. Dell’Aquila et al., Phys. Rev. C 93, 024611 (2016)

    Google Scholar 

  121. S. Ahmed et al., Phys. Rev. C 69, 024303 (2004)

    Google Scholar 

Download references

Acknowledgements

I want also to acknowledge the staff of the tandem accelerator of Naples, the tandem accelerator of INFN-LNS and the K-800 cyclotron of INFN-LNS (FRIBs facility) for having delivered high-quality beams. I am indebted to Dr. Miguel Marques (LPC Caen) for useful discussions and for his careful review of the contents discussed in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Dell’Aquila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dell’Aquila, D. Experimental studies of clustering in light nuclei: 11,12,13,16C. Eur. Phys. J. Plus 135, 165 (2020). https://doi.org/10.1140/epjp/s13360-020-00155-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00155-8

Navigation