Skip to main content
Log in

Constructing chaotic map with multi-cavity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Based on a simplified model, the methods and rules for generating multi-cavity chaotic map are presented. On this basis, a new rhombic cavity hyperchaotic map is constructed. Some typical dynamic properties of the new system are investigated, including phase trace, Lyapunov exponent spectrum (LEs) and bifurcations. The results show that the new chaotic map has rich dynamical behaviors, including complicated phase space trajectory, hyperchaotic behavior, large Lyapunov exponent. By changing the system parameters, the rhombic cavity with adjustable size and number are obtained. The rhombic cavity hyperchaotic map is improved to the multi-directional mode which has more complex topological structure than the original system. The complexity of the improved system is high at the entire parameter space. To verify the validity of the model and the feasibility of the systems, the digital circuits of the rhombic cavity hyperchaotic maps are implemented based on DSP technique. This lays a foundation for the application of these hyperchaotic maps in chaotic secure communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Suykens, J. Vandewalle, Circuits Devices Syst. IEE Proc. G 138(5), 595–603 (1991)

    Google Scholar 

  2. K. Sun, X. Liu, C. Zhu, Chin. J. Electron. 23(2), 353–356 (2014)

    Google Scholar 

  3. M. Khan, T. Shah, H. Mahmood et al., Nonlinear Dyn. 71(3), 489–492 (2013)

    Google Scholar 

  4. F. Han, J. Hu, X. Yu et al., Appl. Math. Comput. 185(2), 931–939 (2007)

    Google Scholar 

  5. E. Solak, R. Rhouma, S. Belghith, Opt. Commun. 283(2), 232–236 (2010)

    ADS  Google Scholar 

  6. J. Hu, F. Han, J. Netw. Comput. Appl. 32(4), 788–794 (2009)

    Google Scholar 

  7. S. Zhou, S. Yu, J. Lü et al., IEEE Trans. Circuit Syst. Video 25(7), 1203–1216 (2015)

    ADS  Google Scholar 

  8. C. Wang, X. Luo, Z. Wan, Optik 125(22), 6716–6721 (2014)

    ADS  Google Scholar 

  9. C. Zhang, S. Yu, Phys. Lett. A 374(30), 3029–3037 (2010)

    ADS  Google Scholar 

  10. B. Bao, G. Zhou, J. Xu et al., Int. J. Bifurc. Chaos 20(7), 2203–2211 (2010)

    Google Scholar 

  11. C. Sánchez-López, R. Trejo-Guerra, J.M. Muñoz-Pacheco et al., Nonlinear Dyn. 61(1), 331–341 (2010)

    Google Scholar 

  12. J. Lü, G. Chen, X. Yu et al., IEEE Trans. Circuits Syst. I Regul. Pap. 51(12), 2476–2490 (2004)

    MathSciNet  Google Scholar 

  13. Y. Ma, Y. Li, X. Jiang, Chaos Solitons Fractals 75, 127–133 (2015)

    ADS  MathSciNet  Google Scholar 

  14. B. Bao, Q. Xu et al., J. Circuits Syst. 16(1), 69–73 (2011)

    Google Scholar 

  15. Q. Hong, Q. Xie, P. Xiao, Nonlinear Dyn. 87(2), 1015–1030 (2017)

    Google Scholar 

  16. T. Zuo, K. Sun, X. Ai et al., IEEE Trans. Circuits Syst. II Express Briefs 61(10), 818–822 (2014)

    Google Scholar 

  17. W. Ai, K. Sun, Y. Fu, Int. J. Mod. Phys. C 29(6), 1850049 (2018)

    ADS  Google Scholar 

  18. L. Zhang, K. Sun, S. He et al., Eur. Phys. J. Plus 132(1), 1–16 (2017)

    ADS  Google Scholar 

  19. R.J. Escalante-González, E. Campos-cantón, M. Nicol, Chaos 27(5), 053109 (2017)

    ADS  MathSciNet  Google Scholar 

  20. B. Bao, Z. Liu, J. Xu et al., Acta Phys. Sin. 59(3), 1540–1548 (2010)

    Google Scholar 

  21. Z. Tang, S. Yu, Appl. Mech. Mater. 340, 760–766 (2013)

    Google Scholar 

  22. J. Ma, X. Wu, R. Chu et al., Nonlinear Dyn. 76(4), 1951–1956 (2014)

    Google Scholar 

  23. E. Günay, K. Altun, Electronics 7(5), 67 (2018)

    Google Scholar 

  24. L. Chen, W. Pan, R. Wu et al., Chaos Solitons Fractals 85, 22–31 (2016)

    ADS  MathSciNet  Google Scholar 

  25. F. Li, C. Yao, Nonlinear Dyn. 84(4), 2305–2315 (2016)

    Google Scholar 

  26. Z. Chen, G. Wen et al., Optik 136, 27–35 (2017)

    ADS  Google Scholar 

  27. F. Yu, C. Wang, H. He, J. Appl. Res. Technol. 11(3), 371–380 (2013)

    Google Scholar 

  28. Z. Chen, G. Wen, H. Zhou et al., Optik 130, 594–600 (2016)

    ADS  Google Scholar 

  29. S. He, S. Banerjee, Physica A 490, 366–377 (2018)

    ADS  MathSciNet  Google Scholar 

  30. H. Natiq, S. Banerjee, S. He et al., Chaos Solitons Fractals 114, 506–515 (2018)

    ADS  MathSciNet  Google Scholar 

  31. W. Liu, K. Sun, S. He, Nonlinear Dyn. 89(4), 2521–2532 (2017)

    Google Scholar 

  32. S. He, K. Sun, H. Wang, Entropy 17(12), 8299–8311 (2015)

    ADS  Google Scholar 

  33. Z. Hua, B. Zhou, Y. Zhou, IEEE Trans. Ind. Electron. 65(3), 2557–2566 (2017)

    Google Scholar 

  34. D. Biswas, T. Banerjee, Nonlinear Dyn. 83(4), 2331–2347 (2016)

    Google Scholar 

  35. S. He, K. Sun, H. Wang et al., Nonlinear Dyn. 92(1), 85–96 (2018)

    Google Scholar 

  36. M. Yu, K. Sun, W. Liu et al., Chaos Solitons Fractals 106, 107–117 (2018)

    ADS  MathSciNet  Google Scholar 

  37. D. He, C. He, L. Jiang et al., IEEE Trans. Circuits Syst. 48(7), 900–906 (2001)

    Google Scholar 

  38. T. Geisel, V. Fairen, Phys. Lett. A 105(6), 263–266 (1984)

    ADS  MathSciNet  Google Scholar 

  39. C. Bandt, B. Pompe, Phys. Rev. Lett. 88(17), 174102 (2002)

    ADS  Google Scholar 

  40. J. Ruan, K. Sun, J. Mou et al., Eur. Phys. J. Plus 133(1), 1–12 (2018)

    Google Scholar 

  41. S. He, K. Sun, H. Wang, Complexity 21(5), 52–58 (2014)

    Google Scholar 

  42. Y. Wu, G. Yang, H. Jin, J. Electron. Imaging 21(1), 013014 (2012)

    ADS  Google Scholar 

  43. Z. Hua, Y. Zhou, C. Pun et al., Inf. Sci. 297, 80–94 (2015)

    Google Scholar 

  44. Z. Hua, Y. Zhou, Inf. Sci. 339, 237–253 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 61161006 and 61573383), the Postdoctoral Innovative Talents Support Program (No. BX20180386) and the National Natural Science Foundation of China (Grant nos. 11747150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehui Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Sun, K. & He, S. Constructing chaotic map with multi-cavity. Eur. Phys. J. Plus 135, 21 (2020). https://doi.org/10.1140/epjp/s13360-019-00052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00052-9

Navigation