Skip to main content
Log in

Multiple residual symmetries and soliton-cnoidal wave interaction solution of the \((2+1)\)-dimensional negative-order modified Calogero–Bogoyavlenskii–Schiff equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The residual symmetry for the \((2+1)\)-dimensional negative-order modified Calogero–Bogoyavlenskii–Schiff (nmCBS) equation is derived from the truncated Painlevé expansion, and is extended to the multiple residual symmetries, which can be transformed to Lie point symmetries by introducing a suitable prolonged system. The nth Bäcklund transformation (BT) related to multiple residual symmetries is given in terms of determinant. More importantly, we obtain the explicit soliton-cnoidal wave interaction solution from a consistent differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A.M. Wazwaz, Negative-order forms for the Calogero-Bogoyavlensky-schift equation and the modified Calogero-Bogoyavlensky-Schiff equation. Proc. Rom. Acad. Ser. A 18, 337–344 (2017)

    Google Scholar 

  2. J.M. Verosky, Negative powers of Olver recursion operators. J. Math. Phys. 32, 1733–1736 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. S.Y. Lou, W.Z. Chen, Inverse recursion operator of the AKNS hierarchy. Phys. Lett. A 179, 271–274 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1993)

    Book  Google Scholar 

  5. G.W. Bluman, A.F. Cheviakov, S.C. Anco, Applications of Symmetry Methods to Partial Differential Equations (Springer, New York, 2010)

    Book  Google Scholar 

  6. J. Weiss, M. Taboe, G. Carnevale, The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Conte, Invariant Painlevé analysis of partial differential equations. Phys. Lett. A 140, 383–390 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  8. S.F. Tian, The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method. Proc. R. Soc. A 472, 20160588 (2016)

    Article  ADS  Google Scholar 

  9. S.F. Tian, Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 262, 506–558 (2017)

    Article  ADS  Google Scholar 

  10. S.F. Tian, Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method. J. Phys. A Math. Theor. 50, 395204 (2017)

    Article  MathSciNet  Google Scholar 

  11. X.B. Wang, S.F. Tian, L.L. Feng, T.T. Zhang, On quasi-periodic waves and rogue waves to the (4+1)-dimensional nonlinear Fokas equation. J. Math. Phys. 59, 073505 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  12. W.Q. Peng, S.F. Tian, T.T. Zhang, Breather waves and rational solutions in the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Comput. Math. Appl. 77, 715–723 (2019)

    Article  MathSciNet  Google Scholar 

  13. S.Y. Lou, Residual symmetries and Bäcklund transformations. arXiv:1308.1140v1

  14. X.N. Gao, S.Y. Lou, X.Y. Tang, Bosonization, singularity analysis, nonlocal symmetry reductions and exact solutions of supersymmetric KdV equation. J. High Energy Phys. 05, 029 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  15. B. Ren, Interaction solutions for mKP equation with nonlocal symmetry reductions and CTE method. Phys. Scr. 90, 065206 (2015)

    Article  ADS  Google Scholar 

  16. W.G. Cheng, B. Li, Y. Chen, Nonlocal symmetry and exact solutions of the (2+1)-dimensional breaking soliton equation. Commun. Nonlinear Sci. Numer. Simul. 29, 198–207 (2015)

    Article  MathSciNet  Google Scholar 

  17. B. Ren, Symmetry reduction related with nonlocal symmetry for Gardner equation. Commun. Nonlinear Sci. Numer. Simulat. 42, 456–463 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. X.Z. Liu, J. Yu, Z.M. Lou, New interaction solutions from residual symmetry reduction and consistent Riccati expansion of the (2+1)-dimensional Boussinesq equation. Nonlinear Dyn. 92, 1469–1479 (2018)

    Article  Google Scholar 

  19. X.P. Cheng, Y.Q. Yang, B. Ren, J.Y. Wang, Interaction behavior between solitons and (2+1)-dimensional CDGKS waves. Wave Motion 86, 150–161 (2019)

    Article  MathSciNet  Google Scholar 

  20. J.C. Chen, S.D. Zhu, Residual symmetries and soliton-cnoidal wave interaction solutions for the negative-order Korteweg–de Vries equation. Appl. Math. Lett. 73, 136–142 (2017)

    Article  MathSciNet  Google Scholar 

  21. J.F. Song, Y.H. Hu, Z.Y. Ma, Bäcklund transformation and CRE solvability for the negative-order modified KdV equation. Nonlinear Dyn. 90, 575–580 (2017)

    Article  Google Scholar 

  22. J.C. Chen, H.L. Wu, Q.Y. Zhu, Bäcklund transformation and soliton–cnoidal wave interaction solution for the coupled Klein–Gordon equations. Nonlinear Dyn. 91, 1949–1961 (2018)

    Article  Google Scholar 

  23. X.Z. Liu, J. Yu, Z.M. Lou, New Bäcklund transformations of the (2+1)-dimensional Bogoyavlenskii equation via localization of residual symmetries. Comput. Math. Appl. 76, 1669–1679 (2018)

    Article  MathSciNet  Google Scholar 

  24. Z.L. Zhao, B. Han, Residual symmetry, Bäcklund transformation and CRE solvability of a (2+1)-dimensional nonlinear system. Nonlinear Dyn. 94, 461–474 (2018)

    Article  Google Scholar 

  25. W.G. Cheng, T.Z. Xu, \(N\)-th Bäcklund transformation and soliton-cnoidal wave interaction solution to the combined KdV-negative-order KdV equation. Appl. Math. Lett. 94, 21–29 (2019)

    Article  MathSciNet  Google Scholar 

  26. S.Y. Lou, Consistent Riccati expansion for integrable systems. Stud. Appl. Math. 134, 372–402 (2015)

    Article  MathSciNet  Google Scholar 

  27. X.R. Hu, Y.Q. Li, Nonlocal symmetry and soliton-cnoidal wave solutions of the Bogoyavlenskii coupled KdV system. Appl. Math. Lett. 51, 20–26 (2016)

    Article  MathSciNet  Google Scholar 

  28. L.L. Huang, Y. Chen, Z.Y. Ma, Nonlocal symmetry and interaction solutions of a generalized Kadomtsev–Petviashvili equation. Commun. Theor. Phys. 66, 189–195 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. J.C. Chen, Z.Y. Ma, Consistent Riccati expansion solvability and soliton–cnoidal wave interaction solution of a (2+1)-dimensional Korteweg–de Vries equation. Appl. Math. Lett. 64, 87–93 (2017)

    Article  MathSciNet  Google Scholar 

  30. H. Wang, Y.H. Wang, CRE solvability and soliton–cnoidal wave interaction solutions of the dissipative (2+1)-dimensional AKNS equation. Appl. Math. Lett. 69, 161–167 (2017)

    Article  MathSciNet  Google Scholar 

  31. Y.H. Wang, H. Wang, Nonlocal symmetry, CRE solvability and soliton-cnoidal solutions of the (2+1)-dimensional modified KdV-Calogero–Bogoyavlenkskii–Schiff equation. Nonlinear Dyn. 89, 235–241 (2017)

    Article  Google Scholar 

  32. H. Wang, Y.H. Wang, H.H. Dong, Interaction solutions of a (2+1)-dimensional dispersive long wave system. Comput. Math. Appl. 75, 2625–2628 (2018)

    Article  MathSciNet  Google Scholar 

  33. X.Z. Liu, J. Yu, Z.M. Lou, Residual symmetry, CRE integrability and interaction solutions of the (3+1)-dimensional breaking soliton equation. Phys. Scr. 93, 085201 (2018)

    Article  ADS  Google Scholar 

  34. M.J. Dong, S.F. Tian, X.W. Yan, T.T. Zhang, Nonlocal symmetries, conservation laws and interaction solutions for the classical Boussinesq–Burgers equation. Nonlinear Dyn. 95, 273–291 (2019)

    Article  Google Scholar 

  35. H.C. Kim, R.L. Stenzel, A.Y. Wong, Development of “cavitons” and trapping of rf field. Phys. Rev. Lett. 33, 886–889 (1974)

    Article  ADS  Google Scholar 

  36. P. Deeskow, H. Schamel, N.N. Rao, M.Y. Yu, R.K. Varma, P.K. Shukla, Dressed Langmuir solitons. Phys. Fluids 30, 2703–2707 (1987)

    Article  ADS  Google Scholar 

  37. A.J. Keane, A. Mushtaq, M.S. Wheatland, Alfvén solitons in a Fermionic quantum plasma. Phys. Rev. E 83, 066407 (2011)

    Article  ADS  Google Scholar 

  38. J.Y. Wang, X.P. Cheng, X.Y. Tang, J.R. Yang, B. Ren, Oblique propagation of ion acoustic soliton–cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons. Phys. Plasmas 21, 032111 (2014)

    Article  ADS  Google Scholar 

  39. B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Physics D 95, 229–243 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  40. A.N.W. Hone, J.P. Wang, Prolongation algebras and Hamiltonian operators for peakon equations. Inverse Probl. 19, 129–145 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  41. A.N.W. Hone, J.P. Wang, Integrable peakon equations with cubic nonlinearity. J. Phys. A Math. Theor. 41, 372002 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Scientific Research Foundation of Educational Committee of Yunnan Province (no. 2019J0735), and the Construction Plan of Key Laboratory of Institutions of Higher Education of Yunnan Province. D.Q. Qiu acknowledges sincerely Prof. Q.P. Liu for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqin Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This project was supported by the Scientific Research Foundation of Educational Committee of Yunnan Province (no. 2019J0735), and the Construction Plan of Key Laboratory of Institutions of Higher Education of Yunnan Province.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W., Qiu, D. & Xu, T. Multiple residual symmetries and soliton-cnoidal wave interaction solution of the \((2+1)\)-dimensional negative-order modified Calogero–Bogoyavlenskii–Schiff equation. Eur. Phys. J. Plus 135, 15 (2020). https://doi.org/10.1140/epjp/s13360-019-00035-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00035-w

Navigation