Skip to main content
Log in

Time resolution of a scintillator–photodetector assembly

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The accurate understanding and control of the time resolution of a scintillator–photodetector assembly are becoming more and more important in medical physics. The time-of-flight information in the positron emission tomography (TOF-PET) enhances in fact the signal-to-noise ratio of the reconstructed images. We present a custom-made Monte Carlo code investigating the role of all the parameters contributing to the time resolution. In particular, the single photoelectron response barely affects the best achievable time resolution. However, it plays a dominant role in reproducing the shape and features (rise time, amplitude) of the signal produced by the detection of a gamma ray. In such a way, it mostly determines the threshold for the best time resolution. We validated the Monte Carlo code by comparing its results with available measurements of time resolutions at various threshold levels in assemblies formed by small-size L(Y)SO and LuAG crystals coupled to Silicon photomultipliers (SiPM) and photomultiplier tubes (PMT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. L.G. Hyman, Rev. Sci. Instr. 36, 193–196 (1965)

    Article  ADS  Google Scholar 

  2. P. Lecoq, I.E.E.E. Trans, Rad. Plasma Med. Sci. 1, 473–485 (2017)

    Google Scholar 

  3. W.W. Moses, IEEE Trans. Nuclear Sci. 50, 1325 (2003)

    Article  ADS  Google Scholar 

  4. A.G. Wright, Fast timing with slow scintillators. Technical Reprint R/P098, http://www.et-enterprises.com

  5. S.E. Derenzo et al., Phys. Med. Biol. 59, 3261–3286 (2014)

    Article  Google Scholar 

  6. W.S. Choong, Phys. Med. Biol. 54, 6495–6513 (2009)

    Article  Google Scholar 

  7. Z. Chen et al., https://www.researchgate.net/publication/256606175, 2013

  8. M. Moszynski, B. Bengtson, Nucl. Instr. Meth. 158, 1–31 (1979)

    Article  Google Scholar 

  9. S. Gundacker et al., JINST 8, P07014 (2013)

    Article  Google Scholar 

  10. S. Gundacker et al., Nucl. Instr. Meth. A 737, 92–100 (2014)

    Article  ADS  Google Scholar 

  11. G. Galetta et al., EPJ Web Conf. 66, 10010 (2014)

    Article  Google Scholar 

  12. http://physics.nist.gov/PhysRefData/

  13. J. Séguinot et al., Il Nuovo Cimento 29C(4), 429–463 (2006)

    ADS  Google Scholar 

  14. I. Vilardi et al., Nucl. Instr. Meth. A564, 506 (2006)

    Article  ADS  Google Scholar 

  15. M.V. Nemallapudi et al., Phys. Med. Biol. 60, 4635 (2015)

    Article  Google Scholar 

  16. http://scintillator.lbl.gov

  17. S. Seifert et al., JINST 7, P09004 (2012)

    Article  ADS  Google Scholar 

  18. S. Gundaker et al., Phys Med Biol. 7, 2802–37 (2016)

    Article  Google Scholar 

  19. S.E. DeRenzo et al., IEEE Trans. Nucl. Sci. 47, 860–864 (2000)

    Article  ADS  Google Scholar 

  20. S. Gundacker et al., JINST 11, P08008 (2016)

    Article  Google Scholar 

  21. M. Conti et al., IEEE Trans. Nucl. Sci. 56, 926–933 (2009)

    Article  ADS  Google Scholar 

  22. K. Kamada et al., IEEE Trans. Nucl. Sci. 58, 570–573 (2009)

    Article  ADS  Google Scholar 

  23. Hamamatsu data sheet 7600U. https://www.hamamatsu.com/resources/pdf/etd/R7600U_TPMH1317E.pdf

  24. Hamamatsu data sheet 9880U. https://www.hamamatsu.com/resources/pdf/etd/R9880U_TPMH1321E.pdf

  25. W. Chewpraditkul et al., IEEE Trans. Nucl. Sci. 56, 3800–3805 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Perrino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Leo, R., Lagamba, L. & Perrino, R. Time resolution of a scintillator–photodetector assembly. Eur. Phys. J. Plus 135, 14 (2020). https://doi.org/10.1140/epjp/s13360-019-00034-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00034-x

Navigation