Skip to main content
Log in

Gaussian soliton pairs in an unbiased photorefractive crystal due to the pyroelectric effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The characteristics of the dynamical evolution of incoherently coupled Gaussian soliton pairs in unbiased photorefractive media forming solely due to the pyroelectric effect are studied for the first time. A parameter space spawning a large set of bright Gaussian soliton pairs in unbiased photorefractive crystals having a large pyroelectric coefficient has been found. These soliton pairs can exist if the light beams have similar polarization, equal wavelength and are mutually incoherent. A change in the temperature of the photorefractive crystal induces a temporary pyroelectric field resulting in the formation of a space-charge field. The existence curve for these soliton pairs is studied for different values of the temperature change. It is also established that both individual components of the soliton pair should have equal spatial widths for stable propagation. The whole parameter space in which these soliton pairs exist as a changeless entity has been investigated in terms of the spatial width of the soliton pair, their peak power, and the magnitude of temperature change of the crystal. The magnitude of the temperature change profoundly affects the evolution characteristics of these Gaussian soliton pairs. The stability of such soliton pairs has been demonstrated using the paraxial theory. Bistable states have been shown to exist in the system irrespective of the magnitude of the temperature change for the case when both components of the soliton pair have equal power. A lithium niobate (LN) crystal has been considered to illustrate the relevant results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.S. Kivshar, G. Agrawal, Optical solitons: from fibers to photonic crystals (Academic Press, 2003)

  2. B. Crosignani, G. Salamo, G.C. Valley, M. Segev, P. Di Porto, M.-F. Shih, Electron. Lett. 31, 826 (1995)

    Article  ADS  Google Scholar 

  3. G.C. Valley, M. Segev, B. Crosignani, A. Yariv, M.M. Fejer, M.C. Bashaw, Phys. Rev. A 50, R4457 (1994)

    Article  ADS  Google Scholar 

  4. Z. Chen, M. Segev, D.N. Christodoulides, Rep. Prog. Phys. 75, 086401 (2012)

    Article  ADS  Google Scholar 

  5. E. Del Re et al., Opt. Lett. 23, 456 (1998)

    Google Scholar 

  6. E. Fazio et al., Appl. Phys. Lett. 85, 2193 (2004)

    Article  ADS  Google Scholar 

  7. J. Safioui, F. Devaux, M. Chauvet, Opt. Express 17, 22209 (2009)

    Article  ADS  Google Scholar 

  8. D.N. Christodoulides, M.I. Carvalho, J. Opt. Soc. Am. B 12, 1628 (1995)

    Article  ADS  Google Scholar 

  9. J. Safioui, E. Fazio, F. Devaux, M. Chauvet, Opt. Lett. 35, 1254 (2010)

    Article  ADS  Google Scholar 

  10. A. Katti, Optik 156, 433 (2018)

    Article  ADS  Google Scholar 

  11. A. Katti, R.A. Yadav, Phys. Lett. A 381, 166 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Katti, J. Nonlinear Opt. Phys. Mater. 26, 1750044 (2017)

    Article  ADS  Google Scholar 

  13. Y. Su, Q. Jiang, X. Ji, Optik 126, 1621 (2015)

    Article  ADS  Google Scholar 

  14. S.T. Popescu, A. Petris, V.I. Vlad, J. Appl. Phys. 113, 213110 (2013)

    Article  ADS  Google Scholar 

  15. Z. Chen, M. Segev, T.H. Coskun, D.N. Christodoulides, Y.S. Kivshar, J. Opt. Soc. Am. B 14, 3066 (1997)

    Article  ADS  Google Scholar 

  16. H. Chun-Feng, P. Yan-Bo, Z. Zhong-Xiang, S. Xiu-Dong, Chin. Phys. 14, 349 (2005)

    Article  ADS  Google Scholar 

  17. H. Chun-feng et al., Chin. Phys. 10, 310 (2001)

    Article  ADS  Google Scholar 

  18. X. Ji, Q. Jiang, J. Liu, J. Nonlinear Opt. Phys. Mater. 19, 167 (2010)

    Article  ADS  Google Scholar 

  19. L. Keqing, Z. Yanpeng, T. Tiantong, L. Bo, Phys. Rev. E 64, 056603 (2001)

    Article  ADS  Google Scholar 

  20. A. Katti, R.A. Yadav, J. Nonlinear Opt. Phys. Mater. 26, 1750002 (2017)

    Article  ADS  Google Scholar 

  21. A. Katti, R.A. Yadav, D.P. Singh, Optik 136, 89 (2017)

    Article  ADS  Google Scholar 

  22. S. Konar, S. Jana, S. Shwetanshumala, Opt. Commun. 273, 324 (2007)

    Article  ADS  Google Scholar 

  23. K. Zhan, C. Hou, H. Tian, Y. Zhang, Opt. Laser Technol. 42, 1176 (2010)

    Article  ADS  Google Scholar 

  24. A. Katti, Appl. Phys. B 124, 192 (2018)

    Article  ADS  Google Scholar 

  25. L. Keqing, Z. Yanpeng, T. Tiantong, L. Bo, Phys. Rev. E 64, 056603 (2001)

    Article  ADS  Google Scholar 

  26. L. Hao, Q. Wang, C. Hou, J. Mod. Opt. 62, 231 (2015)

    Article  Google Scholar 

  27. W.-X. Ma, M. Chen, Appl. Math. Comput. 215, 2835 (2009)

    MathSciNet  Google Scholar 

  28. H. Triki, A.-M. Wazwaz, Rom. J. Phys. 61, 360 (2016)

    Google Scholar 

  29. Y. Xie, Z. Yang, L. Li, Phys. Lett. A 382, 2506 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  30. Z. Yan, V.V. Konotop, Phys. Rev. E 80, 036607 (2009)

    Article  ADS  Google Scholar 

  31. A.R. Seadawy, Appl. Math. Lett. 25, 687 (2012)

    Article  MathSciNet  Google Scholar 

  32. J. Villarroel, J. Prada, P.G. Estevez, Stud. Appl. Math. 122, 395 (2009)

    Article  MathSciNet  Google Scholar 

  33. R. Magnus, Electron. J. Differ. Equ. 1998, 1 (1998)

    Google Scholar 

  34. W.-X. Ma, J. Li, C.M. Khalique, Complexity 2018, 9059858 (2018)

    Google Scholar 

  35. W.-X. Ma, J. Geom. Phys. 133, 10 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. A.A. Minzoni, N.F. Smyth, Wave Motion 24, 291 (1996)

    Article  MathSciNet  Google Scholar 

  37. W.-X. Ma, Phys. Lett. A 379, 1975 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov, Sov. Phys. Usp.-USSR 10, 609 (1968)

    Article  ADS  Google Scholar 

  39. D. Anderson, Phys. Rev. A 27, 3135 (1983)

    Article  ADS  Google Scholar 

  40. S.N. Vlasov, V.A. Petrishchev, V.I. Talanov, Radiophy. Quantum Electron. 14, 1062 (1974)

    Article  ADS  Google Scholar 

  41. K. Zhan, C. Hou, H. Tian, Y. Zhang, Opt. Laser Technol. 42, 1176 (2010)

    Article  ADS  Google Scholar 

  42. V. Skarka, V.I. Berezhiani, R. Miklaszewski, Phys. Rev. E 56, 1080 (1997)

    Article  ADS  Google Scholar 

  43. Z. Liu, W. Zang, J. Tian, W. Zhou, C. Zhang, G. Zhang, Opt. Commun. 219, 411 (2003)

    Article  ADS  Google Scholar 

  44. Y. Huang, Q. Guo, J. Cao, Opt. Commun. 261, 175 (2006)

    Article  ADS  Google Scholar 

  45. P. Tchofo Dinda, A.B. Moubissi, K. Nakkeeran, J. Phys. A 34, L103 (2001)

    Article  ADS  Google Scholar 

  46. J.H.B. Nijhof, W. Forysiak, N.J. Doran, IEEE J. Sel. Topics Quantum Electron. 6, 330 (2000)

    Article  ADS  Google Scholar 

  47. J.N. Kutz, S.D. Koehler, L. Leng, K. Bergman, J. Opt. Soc. Am. B 14, 636 (1997)

    Article  ADS  Google Scholar 

  48. A. Katti, R.A. Yadav, A. Prasad, Wave Motion 77, 64 (2018)

    Article  MathSciNet  Google Scholar 

  49. A. Katti, Opt. Quantum Electron. 50, 263 (2018)

    Article  Google Scholar 

  50. X. Wan, D.Y. Wang, X. Zhao, H. Luo, H.L.W. Chan, C.L. Choy, Solid State Commun. 134, 547 (2005)

    Article  ADS  Google Scholar 

  51. R. Zhang, B. Jiang, W. Cao, J. Appl. Phys. 90, 3471 (2001)

    Article  ADS  Google Scholar 

  52. L. Hao, Q. Wang, C. Hou, J. Mod. Opt. 61, 1236 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aavishkar Katti.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katti, A. Gaussian soliton pairs in an unbiased photorefractive crystal due to the pyroelectric effect. Eur. Phys. J. Plus 134, 621 (2019). https://doi.org/10.1140/epjp/i2019-12964-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12964-7

Navigation